830 likes | 983 Vues
北京谱仪实验( BES ). 沈肖雁 中国科学院 高能物理研究所 shenxy@ihep.ac.cn 2011 年 11 月 4 日 (中国科学技术大学). 目录. 粒子物理简介 北京谱仪实验上的物理 轻强子谱的研究 粲偶素产生与衰变性质的研究 CKM 矩阵元的精确测量 R 值的精确测量和 QCD 研究 物理 新物理的寻找 北京谱仪实验结果举例. 1947 年前,我们只知道很少的“粒子”,如质子、中子、电子、 μ 子等,人们认为这些粒子就是构成物质的最小单元,称之为 “ 基本粒子 ” 。 此后,在宇宙线实验和粒子加速器实验中发现了大量的粒子:
E N D
北京谱仪实验(BES) 沈肖雁 中国科学院 高能物理研究所 shenxy@ihep.ac.cn 2011年11月4日 (中国科学技术大学)
目录 • 粒子物理简介 • 北京谱仪实验上的物理 • 轻强子谱的研究 • 粲偶素产生与衰变性质的研究 • CKM矩阵元的精确测量 • R值的精确测量和QCD研究 • 物理 • 新物理的寻找 • 北京谱仪实验结果举例
1947年前,我们只知道很少的“粒子”,如质子、中子、电子、μ子等,人们认为这些粒子就是构成物质的最小单元,称之为“基本粒子”。 此后,在宇宙线实验和粒子加速器实验中发现了大量的粒子: π,π0,K,K0 ,K0,Λ,,Ξ,Δ …约几百种。 有的寿命很短,产生出来很快就蜕变成别的粒子。 问题:是不是这几百种粒子都是“基本”的? 王淦昌发现反西格玛负超子 3
介子由(qq)构成 重子由(qqq)构成 +(ud ) 质子(uud) M. Gell-Mann 1969 Nobel 1963年, 根据大量的实验数据, 盖尔曼等猜测这些粒子具有内部结构,并给出了计算这些粒子质量的公式 盖尔曼的夸克模型:共有三种夸克u,d,s 60年代中期,中国的粒子物理学家曾提出 了层子模型 4
质量公式预言 m-=1670 MeV实验 m- =1672.45 0.29 MeV s s K0(ds) K+(us) K*0 K*+ +(ud) + 0 0 -(u d) I3 - I3 K-(su) K0(sd) K*- K*0 自旋为0 自旋为1 uu-dd 0 = 2 △- s △0 △+ △++ (uuu) (ddd) n(udd) p(uud) (udd) (uud) 0 *- *+ (uus) (dds) (uds) 0 (uds) + (uus) -(dds) I3 0 *- *0 (uss) (dss) - (sss) -(dss) 0(uss) 5
建立夸克模型的关键实验:电子轰击质子(1972) e e 质子并不是一个几何点。它有大小,其半径 10-13cm,电荷就分布在这样一个小空间范围 质子内部分布着大量的点电荷 定量分析表明,质子是由三个夸克组成 Jerome I. Friedman 等,1992 Nobel 6
几年后,实验上发现charm夸克! November revolution 1974年——丁肇中,B. Richter 发现J/ 粒子 这个介子寿命非常长。 → charm夸克(c) mc ~ 1.5GeV J/Ψ 由(cc)构成。 7
“November Revolution of Particle Physics!” Discovery of the J/ψ Charm quark was proposed in 1964, first application in 1970! PRL33, 1404 (1974) PRL33, 1406 (1974) PRL33, 1408 (1974) ADONE confirmed! BNL SLAC Design: Maximum Ecm~3 GeV!
Discovery of the ψ(2S) PRL33, 1453 (1974) PRL34, 365 (1975) PRL34, 369 (1975) SLAC From then on, there is a new field in HEP: Charmonium Physics.
1977年——L.Lederman 发现 ( 9.5GeV ) → Beauty (Bottom) (b) mb ~ 5GeV (9.5)由(bb )构成 1994年——Fermilab. CDF组发现 Top 夸克 (t) mt ~ 176GeV
我们知道的构成物质世界的最“基本” 粒子 从轻到重 电荷 +2/3 t u c 夸克( q ) s b d -1/3 m ne nt 0 轻子( l ) e m t -1 11
粒子物理要解决的基本问题:2. 研究物质之间的相互作用 宏观(经典)作用力 微观(量子)作用力 • 物质之间已知的相互作用 • 引力相互作用 • 电磁相互作用 • 弱相互作用 • 强相互作用 • 相互作用的传播 • 所有的相互作用均通过传播子以光速传播 • 引力: 质量, 引力子(?) • 电磁力: 电荷, 光子 12
弱相互作用 Enrico Fermi 1937 nobel 1957 nobel • 原子核衰变n p + e + n • 30年代, Fermi 提出了弱作用理论 • 弱作用的特性: • 宇称不守恒(P) 只有左旋中微子 • 电荷反演不守恒(C) • CP不守恒 13 Chen Ning Yang Tsung-Dao Lee
弱电统一 Carlo Rubbia 1984 nobel • 弱作用本质上与电磁作用是同一种力,就象电与磁是同一种力,均可由麦克斯韦方程描述一样 • 弱电统一理论70年代由温伯格等提出,其基础是杨振宁与Mills 提出的杨- Mills规范场理论 • Rubbia 等80年代通过实验证实了弱电统一理论 • 问题: • 弱作用: 弱荷, W, Z0 • W, Z0 有质量,如何传播相互作用? • 解决办法: • W, Z0 与一种叫做Higgs 的粒子相互作用 • 寻找Higgs 粒子是目前粒子物理研究的首要任务 14
强相互作用: 量子色动力学 • 描述强相互作用的理论。 • 强子(参与强相互作用的粒子)由夸克组成。 • 夸克与胶子是有颜色的(色荷)。 • “夸克渐进自由”为理论基础。 • 强相互作用的渐近自由理论已被实验所证实。 15
粒子物理-标准模型理论 • 粒子物理是研究物质深层结构和相互作用的基础学科: • 始终处于科学发展的最前沿 • 物质结构:物质由三代轻子与夸克构成: • 自然界中四种相互作用中的三种: } 电磁作用 弱作用 电弱统一理论 (EW) 强作用 量子色动力学(QCD)
标准模型(EW+QCD)的检验 • 以在欧洲核子物理中心(CERN)的 LEP 对撞机上的四个实验为主,对标准模型,尤其是弱电理论进行了大量精确检验,证明了标准模型的巨大成功。 • 标准模型中的Higgs粒子的寻找是LHC实验主要物理目标之一。
量子色动力学(QCD) • 在高能(>10 GeV)下预言的“渐近自由”现象已被大量实验所证实。“渐近自由” 的发现获得 2004 年 Nobel 奖。 • 低能下( <3GeV) 尚有待进一步实验检验,尤其是有许多重大问题亟待实验回答: • 低能下如何描述强相互作用系统? • 自然界是否存在新型强子和新的物质形态?
Beijing Electron Positron Collider (BEPC) at IHEP Linac Storage ring BES BSRF 20
(BEPC/BES) beam energy: 1.0 – 2.3(2.5) GeV Physics goal BES 1-2.3GeV e+ e- collisions produce charmonium states (J/,(2S), cJand (3770)etc.), charm mesons and lepton. 21 21
-粲物理是国际高能物理实验研究 竞争的热点之一 • 2001年初,美国的 CESR将它的能量从 B介子 • 能区(束流能量5.3 GeV)降到粲能区。2008年4月停! • 美国和日本的 B介子工厂也在研究粲物理(停机) • BELLE-II 正在建造,意大利 SuperFlavor Factory • 已经立项 • 正在欧洲投入巨资建造的 PANDA实验也以粲物理 • 研究为首要物理目标之一 。(2017年后建成) • 正在运行的北京正负电子对撞机 (BEPCII) /北京 • 谱仪 (BESIII) 是近年内唯一运行在-粲能区 • 的实验装置!
Physics at BEPC/BES We are unique now in -charm region From PDG The Y’s are here! 23 • In transition region between pQCD and non-pQCD.
BEPCII/BESIII • In the 1990s, there was discussion of the future. The conclusion was to continue tau-charm physics with a major upgrade of the accelerator and detector (BEPCII/BESIII). Officially approved in 2003. • The physics window is precision charm physics and the search for new physics. • High statistics: high luminosity machine + high quality detector. • Small systematic error: high quality detector.
BEPCII Storage Ring: Double-ring RF SR RF Beam energy: 1.0-2 .3GeV Luminosity: 1×1033 cm-2s-1 Optimum energy: 1.89 GeV Energy spread: 5.16 ×10-4 No. of bunches: 93 Bunch length: 1.5 cm Total current: 0.91 A SR mode: 0.25A @ 2.5 GeV IP
BESIII Collaboration http://bes3.ihep.ac.cn ~300 members from 48 institution of 9 counties Europe (10) Germany: Univ. of Bochum, Univ. of Giessen, GSI Univ. ofJohannes Gutenberg Helmholtz Ins. In Mainz Russia: JINR Dubna; BINP Novosibirsk Italy: Univ. of Torino,FrascatiLab Netherland:KVI/Univ. of Groningen US(6) Univ. of Hawaii Univ. of Washington Carnegie Mellon Univ. Univ. of Minnesota Univ. of Rochester Univ. of Indiana Korea (1) SeoulNat. Univ. China(29) IHEP, CCAST, Shandong Univ., Univ. of Sci. and Tech. of China Zhejiang Univ., Huangshan Coll. Huazhong Normal Univ., Wuhan Univ. Zhengzhou Univ., Henan Normal Univ. Peking Univ., Tsinghua Univ. , Zhongshan Univ.,Nankai Univ. Shanxi Univ., Sichuan Univ Hunan Univ., Liaoning Univ. Nanjing Univ., Nanjing Normal Univ. Guangxi Normal Univ., Guangxi Univ. Suzhou Univ., Hangzhou Normal Univ. Lanzhou Univ., Henan Sci. and Tech. Univ. Hong Kong Univ., Hong Kong Chinese Univ. Japan (1) Tokyo Univ. Pakistan (1) Univ.of Punjab 28
Physics Topics at BES • Study of Light hadron spectroscopy • search for non-qq or non-qqq states • meson spectroscopy • baryon spectroscopy • Study of the production and decay mechanisms of • charmonium states: J/, (2S), C(1S), C{0,1,2} , • C(2S), hC(1P1), (3770), etc. • New Charmonium states above open charm threshold. • Precise measurement of R values, mass, ... • Precise measurement of CKM matrix • Search for DDbar mixing, CP violation, etc. arXiv: 0809.1869 29
New forms of hadrons • Hadrons consist of 2 or 3 quarks: Naive Quark Model: • QCD predicts the new forms of hadrons: • Multi-quark states:Number of quarks >= 4 • Hybrids: qqg,qqqg … • Glueballs: gg, ggg … Meson( qq ) Baryon(q q q)
Study of the spectroscopy – a way of understanding the internal structure glueball spectrum from LQCD • Motivation: • Establish spectrum of light hadrons • Search for non-conventional hadrons • Understand how hadrons are formed • Why at a -charm collider ? • Gluon rich • Clean environment • JPC filter , isospin filter Y. Chen et al., PRD 73 (2006) 014516 31 31
Physics Topics at BES • Study of Light hadron spectroscopy • search for non-qqbar or non-qqq states • meson spectroscopy • baryon spectroscopy • Study of the production and decay mechanisms of • charmonium states: J/, (2S), C(1S), C{0,1,2} , • C(2S), hC(1P1), (3770), etc. • New Charmonium states above open charm threshold. • Precise measurement of R values • Precise measurement of CKM matrix • Search for DDbar mixing, CP violation, etc. arXiv: 0809.1869 32
Charmonium physics 粲偶素谱 ?? • Examples of interesting/long • standing issues: • rp puzzle • Missing states ? • Mixing states ? • New states above open charm thre.(X,Y,Z,…) X(3872) • What to study ? • Production, decays, transition, spectrum
Physics Topics at BES • Study of Light hadron spectroscopy • search for non-qqbar or non-qqq states • meson spectroscopy • baryon spectroscopy • Study of the production and decay mechanisms of • charmonium states: J/, (2S), C(1S), C{0,1,2} , • C(2S), hC(1P1), (3770), etc. • New Charmonium states above open charm threshold. • Precise measurement of R values • Precise measurement of CKM matrix • Search for DDbar mixing, CP violation, etc. arXiv: 0809.1869 34
R measurement Why precise R important? Essential for precise tests of SM. • the global fit of Higgs mass • anomalous magnetic moment from g-2 R : one of the most important and fundamental quantities in particle physics. 35
Physics Topics at BES • Study of Light hadron spectroscopy • search for non-qqbar or non-qqq states • meson spectroscopy • baryon spectroscopy • Study of the production and decay mechanisms of • charmonium states: J/, (2S), C(1S), C{0,1,2} , • C(2S), hC(1P1), (3770), etc. • New Charmonium states above open charm threshold. • Precise measurement of R values • Precise measurement of CKM matrix • Search for DDbar mixing, CP violation, etc. arXiv: 0809.1869 36
Precise measurement of CKM elements -- Test EW theory CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction. 5% precision 10% precision CKMmatrix Three generations of quark? Unitary matrix? Expect precision < 2% at BESIII Improve the precision at BESIII Precision measurement of CKM matrix elements --a precise test to SM model New physics beyond SM? 37
Decay constants vs LQCD fD 2.3 difference for fDs. Real ? BESIII may resolve this issue, reach the precision of LQCD. fDs
e+e- (3770) D0D0 CP violation and mixing • CPviolation is regarded as the origin of asymmetry of the matter and anti-matter. • CP violation predicted by theoretical models is not big • enough to describe the asymmetry. • CP violation is observed in K and B decays, but has never • been in charm sector. 0 0 In SM, the mixing is very small. At BESIII, the sensitivity of the mixing rate:1.5 10-4 mixing : a good place to search for CP violation 39
BESIII commissioning and data taking milestones Mar. 2008: first full cosmic-ray event • April 30, 2008: Move the BESIII to IP • July 19, 2008: First e+e- collision event in BESIII • Nov. 2008: ~ 14M (2S) events • April 14, 2009: ~106M (2S) events • May 30, 2009: ~42 pb-1 at continuum (3.65 GeV) • July 28, 2009: ~226M J/ events • Aug. – Dec., 2009: summer maintenance, SR run • Jan. 2010 – April 2011: ~2900 pb-1 at (3770) • May 2011: ~ 500 pb-1 at (4040) for Ds and XYZ spectroscopy Peak Lumi. : 0.651033cm-2s-1 Designed:1033cm-2s-1
BESIII data-taking plans • 2012:1 billon J/, 0.7~1 billon ’ • 2013: @4170 MeV DS physics; R scan • 2014: R scan • (3770) 5-10 fb-1 41
First collision event on July 19, 2008 e+e- (3770) D0D0
MDC performance & data/MC Reso. 135 mm σP=11.0 MeV/c
Double-layer TOF Time Resolution (ps) Barrel Double Layer Z (cm)
EMC (CsI(Tl)) Barrel energy resolution • energy deposit for e+e-gg energy resolution for Bhabha events Position resolution for Bhabha 4.4 mm
Inclusive photon spectrum of (2S) Excellent photon resolution c1 c2 co c1,2 J/ c BESIII preliminary
Results from BESIII • Confirm BESII results • threshold enhancement in pp, X(1835), … • New improved measurements • hc, c, cJ, , … • New observations • cJ decays • hcdecays • Light hadrons, … J/ (2S)
hc(1P1) • Spin singlet P wave (S=0, L=1) • Potential model: if non-vanishing spin-spin interaction, • DMhf(1P) = M(hc) - <m(1 3PJ)> ≠0 • where <m(1 3PJ)>= [(M(cc0)+3M(cc1)+5M(cc2)]/9 • E835 found evidence for hc in pphcc • CLEOc observed hc in ee’0hc, hc c • DMhf(1P)=0.08±0.18±0.12 MeV/c2 • Consistent to 1P hyperfine splitting of 0. _ PRL 101 182003 (2008) Theoretical prediction: BF((2S)0hc) = (0.4-1.3)×10-4 BF(hcc) =48% (NRQCD) BF(hcc) =88% (PQCD) Kuang, PR D65 094024 (2002) BF(hcc) =38% Godfrey and Rosner, PR D66 014012(2002) 49
y(2S)p 0hc ,hcghcat BESIII BESIII BESIII: PRL 104 132002 (2010) Mass = 3525.40±0.13±0.18 MeV/c2 Width = 0.73±0.45±0.28 MeV <1.44 MeV@90% CLEOc: PRL 101 182003 (2008) Mass = 3525.28±0.19±0.12 MeV Width: fixed at 0.9 MeV Hyperfine mass splitting DMhf(1P)= M(hc ) - <m(1 3PJ )> BESIII: 0.10±0.13±0.18 MeV/c2 CLEOc:0.02±0.19±0.13 MeV/c2 E1 tagged inclusive By combining inclusive results with E1-photon tagged results BF(' 0 hc) = (8.4±1.3±1.0) ×10-4Agree with prediction from Kuang, BF(hc c) = (54.3±6.7±5.2)%Godgrey, Dude et al. 50