1 / 43

Wave

Wave. Transfers Energy Without Transferring Matter. Wave. A wave can be described as a disturbance that travels through a medium from one location to another location. There are three types of waves:. Mechanical waves require a material medium to travel (air, water, ropes).

Télécharger la présentation

Wave

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wave Transfers Energy Without Transferring Matter

  2. Wave • A wave can be described as a disturbance that travels through a medium from one location to another location.

  3. There are three types of waves: • Mechanical waves require a material medium to travel (air, water, ropes). • Electromagnetic waves do not require a medium to travel (light, radio). • Matter wavesare produced by electrons and particles.

  4. Mechanical Waves • Transverse wavescause the medium to move perpendicular to the direction of the wave. • Longitudinal wavescause the medium to move parallel to the direction of the wave. • Surface wavesare both transverse waves and longitudinal waves mixed in one medium. (Such as water waves) • Torsional wavesproduce a twisting motion through the medium – such as the ones which caused the collapse of the Tacoma Narrows Bridge.

  5. Tacoma Narrows BridgeTorsional Oscillation Mechanical Universe Video

  6. Transverse & Longitudinal Waves • In a transverse wave, the particles of the medium oscillate perpendicular to the direction of wave travel. • In a longitudinal wave, the particles of the medium oscillate along the direction of wave travel.

  7. 3 Types of Mechanical Waves

  8. Wave Tutorial Links • http://library.thinkquest.org/10796/ch8/ch8.htm • http://www.physicsclassroom.com/Class/waves/wavestoc.html

  9. Longitudinal Tuning Fork Wave • Vibrating tines produce an alternating pattern of high pressure and low pressure regions. • This pattern travels away from the fork. • Compression – high pressure • Rarefaction – low pressure

  10. Period: T • The PERIOD of a wave is the time for a particle of the medium to complete one oscillation. • The SI unit for period is the second.

  11. Frequency: f • The FREQUENCY of a wave is the number of cycles per unit time. • The unit is Hertz (Hz) which is a cycle per second. • FREQUENCY is also the reciprocal of the period.

  12. Amplitude: A • The AMPLITUDE of a wave is the maximum distance of a particle from the equilibrium position. • The SI unit for amplitude is meter

  13. Wavelength: l (lambda) • The WAVELENGTH of a wave is the length of one complete cycle. • It is the distance between two consecutive “in phase” points. • In phase points are those that are moving in step with each other.

  14. Wave Applets • Wavelength, Amplitude, Phase • Frequency, Wavelength, Speed • Longitudinal Wave • Transverse Wave • Superposition Principle 1 • Superposition Principle 2

  15. Wave Equation • The speed of a wave is equal to the product of the wave’s frequency and wavelength. • v: wave speed • f: frequency • l : wavelength

  16. Speed of Wave on String

  17. Sound Waves • The origin of any sound is a vibrating object • Usually the frequency of the sound is the same as that of the vibrating object • Frequency Range: Sound: 20 Hz – 20,000 Hz Ultrasound: >20,000 Hz Infrasound: < 20 Hz

  18. Forced Vibration & Resonance • forced vibration – example -- strike tuning fork and hold the stem against the table • sounding board -- used to amplify sound in music boxes and all string • resonance -- when the frequency of forced vibrations matches the object's natural frequency, a dramatic increase in amplitude occurs

  19. Speed of Sound

  20. Speed of Sound in Air • depends on wind conditions, temperature, and humidity • does NOT depend on loudness or frequency of the sound • all sounds travel at the same speed in the same medium in dry air at 0°C ~ 331 m/s (1200 km/h) (740 mi/h) • Sound travels faster through warm air than cold air. • In air, vsound = 331.4 m/s + (0.6 m/s/Co)*TC

  21. Distance to Lightning • Light travels at 3 x 108 m/s in air • Sound travels at about 330 m/s in air at 0oC • It takes about 5 seconds for the sound (the thunder) to travel 1 mile. • Count the seconds between the flash and the sound, divide by 5, and you have the approximate distance in miles to the lightning.

  22. Pitch & Loudness • Pitch – frequency Double frequency – go up an octave • Loudness – amplitude • Units – W/m2

  23. Human Ear

  24. Decibel Scale • incredibly sensitive • can hear everything from fingertip brushing lightly over fabric to a loud jet engine • sound of jet engine is about 1012 times more powerful than smallest audible sound • a big difference! • decibel scale -- smallest audible sound is 0 dB • A sound 10 times more powerful is 10 dB • A sound 100 times more powerful than near total silence is 20 dB Decibel Scale is logarithmic

  25. Sound Intensities (W/m2)

  26. Intensity Level • Logarithmic Scale • Dimensionless • I0 = 10-12 W/m2

  27. Decibel Levels • Near total silence - 0 dB • A whisper - 15 dB • Normal conversation - 60 dB • A lawnmower - 90 dB • A car horn - 110 dB • A rock concert or a jet engine - 120 dB • A gunshot or firecracker - 140 dB

  28. Doppler Effect • Doppler Effect Lesson

  29. Doppler Effect • Moving Source Moving Observer • General Expression

  30. Superposition Principle • Wave interference occurs when two or more waves act simultaneously on a medium. • Whenever two or more waves pass through each other, the resulting disturbance at a given point in the medium may usually be found by adding the individual displacements that each wave would have caused. (Principle of Superposition)

  31. Constructive Interference • Constructive interference occurs when the waves are trying to displace the medium in the same direction.

  32. Destructive Interference • When these two waves are completely overlapping, there will be complete destructive interference. • Destructive interference occurs when the waves are trying to displace the medium in opposite directions.

  33. Pulse/Wave Reflection • Fixed/Free End Reflection of Sine Wave Fixed End Reflection Free End Reflection Interference between incident and reflected pulse in a fixed end reflection

  34. Standing Waves • For certain frequencies, the interference of the incident and reflected waves results in a standing wave pattern.

  35. Fundamental Frequencyand Harmonics

  36. Standing Waves in a Tube • Closed on one end: • Open on both ends:

  37. Waves Moving in and Out of Phase • When the 2 waves are in phase, the resulting disturbance has a maximum amplitude. • When the 2 waves are out of phase, the resulting disturbance has a minimum amplitude.

  38. Beats • Waves of slightly different frequencies form a pattern of alternating maximum and minimum amplitude. • The packets of maximum amplitude are called beats.

  39. Noise Canceling • tiny microphones, one on each earpiece, detect ambient noise before it gets to your ears. • noise-cancellation circuitry inverts the captured signal, turning the noise's sound wave upside down. • noise-cancellation system adds the sonic opposite of the external noise to whatever you're listening to • eliminating most of the pollution and leaving you with just your music.

  40. Standing Waves • http://phet.colorado.edu

  41. Fundamental & Harmonics

More Related