1 / 61

项目 4 温度指示器的制作与 调试

项目 4 温度指示器的制作与 调试. 每当季节更替,气候变化时,令人想回忆过去的往事。利用集成运放的应用电路,制作一款温度指示器,随时陪伴在你的身边,让你觉得总有“人”关心你,提示你“寒”“暑”间的温度变化。其实,时至今日,集成运放在各种放大器、比较器、振荡器、信号运算电路得到了广泛应用,成为一种通用性很强的基本集成电路。. 1. 集成运算放大器在基本运算中的应用. 2. 集成运算放大器在波形发生方面的应用. 3. 集成运算放大器在信号处理方面的应用. 3. 内容提要. 任务目标: 1 .理解集成运算放大器的特点;

aldan
Télécharger la présentation

项目 4 温度指示器的制作与 调试

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 项目4 温度指示器的制作与调试 每当季节更替,气候变化时,令人想回忆过去的往事。利用集成运放的应用电路,制作一款温度指示器,随时陪伴在你的身边,让你觉得总有“人”关心你,提示你“寒”“暑”间的温度变化。其实,时至今日,集成运放在各种放大器、比较器、振荡器、信号运算电路得到了广泛应用,成为一种通用性很强的基本集成电路。

  2. 1 集成运算放大器在基本运算中的应用 2 集成运算放大器在波形发生方面的应用 3 集成运算放大器在信号处理方面的应用 3 内容提要

  3. 任务目标: 1.理解集成运算放大器的特点; 2.了解集成运放的单元电路(恒流源、差分放大器)的组成形式及基本特性; 3.掌握集成运放在线性系统中的应用; 4.能正确识读集成运放和判断其的质量好坏 任务教学方式: 教学建议:采用多媒体课件,重点介绍差分放大器输入与输出方式及特点;集成运放的应用电路应结合练习,精讲电路结构形式及特性 任务1 集成运算放大器在基本运算中的应用

  4. 知识1 集成运放的基本单元电路 1.电流源电路 (1)单管电流源电路 单管电流源电路采用分压 偏置式电路(即引入电流负反馈) 任务1 集成运算放大器在基本运算中的应用 集成电路内部结构框图 单管电流源电路

  5. (2)镜像电流源 • V1和V2管的参数完全相同,故IC1=IC2,当管子的β较大时, IB很小,可忽略不计,所以V2管的集电极电流IC2(即 电流源输出电流)近似等于基准电流IREF, 即 镜像电流源

  6. 由于电流源具有直流电阻小,而交流电阻很大的特点,在集成电路内部的放大器广泛使用电流源作有源负载 。 由于普通晶体管电流源的频率特性较差,尤其是横向PNP管电流源的频率特性更差,所以在高速或宽带集成电路中,一般不采用有源负载放大器。 有源负载放大器

  7. 2.差分放大电路 (1)零点漂移现象 在单级共射放大器处静态时,由于温度变化、电源波动、器件的老化等因素的影响,会使工作点电压(即集电极电位)偏离设定值而缓慢地上下漂动,这种现象称为零点漂移,简称“零漂”。 (2)基本差分放大器 1)电路结构

  8. 对于完全对称的差分放大电路,输出电压uo=uc1-uc2=0,因此共模电压放大倍数 共模放大倍数AVC愈小,则表明抑制零漂移能力愈强。 差分放大器常用共模抑制比KCMR(Common - Mode Rejection Ratio)来衡量放大器对有用信号的放大能力及对无用漂移信号的抑制能力,其定义为

  9. 2)典型的差分放大电路 当输入信号ui=0时,由于电路不完全对称,输出uo不一定为零,这时可调节RP,使电路达到对称,uo=0。而发射极电阻Re的作用是引入共模负反馈。例如,当温度升高时,两个晶体管的射极电流同时增大,射极电阻Re两端电压升高,使两管发射结压降同时减小,基极电流也都减小,从而阻止了两管集电极电流随温度升高而增大,稳定了静态工作点,有效地抑制零漂。在共模信号输入时,由于差分放大器在Re上形成的反馈电压是单管电路的两倍,故对共模信号有很强的抑制能力。

  10. 3.具有恒流源的差分放大器 由于电流源的输出端电位在很宽范围内变化时,输出电流的变化极小,因而当输入共模信号引起射极电位改变时,将不会影响差模性能,但会使共模放大倍数减小。因此,引入恒流源后,扩大了差动电路的共模输入电压范围,从而提高共模抑制比。

  11. 4.差分放大电路的几种输入、输出方式 双端输入和双端输出差分放大电路如图(a)所示,可利用电路两侧对称性及Re的共模反馈来抑制零漂; 图(b)为双端输入、单端输出差分放大电路; 图(c)为单端输入、双端输出差分放大电路;而图(d)为单端输入、单端输出差分放大电路。

  12. 无论是双端输入,还是单端输入,只要是双端输出时,AuD = AuD1(AuD1单边差模电压放大倍数);单端输出时, 想一想: 1.零点漂移是否在任何耦合方式的多级放大器中都存在呢? 2.在差分放大器的不同连接方式中,输出方式怎样影响电压放大倍数的?输入方式会影响电压放大倍数吗?

  13. 知识2 集成运算放大器应用 理想化的条件主要是:开环放大倍数Ao→∞;差模输入电阻rid→∞;开环输出电阻ro→0;共模抑制比KCMRR→∞。 运算放大器工作在线性区时,分析依据有两条:一是由于运算放大器输入端的差模输入电阻rid→∞,故认为两个输入端的输入电流为零,称为“虚断”;二是由于运算放大器的开环放大倍数Ao→∞,输出电压是一个有限的数据,从uo=Ao(u+-u-)=uo/ Ao≈0,所以认为u+≈u-,称为“虚短”。

  14. 反馈电阻 输入电阻 输入 输出 平衡 电阻 (a)新符号 (b)旧符号 1.反相比例放大电路

  15. 2.同相比例放大器电路 当Rf=0,R1→∞时, 便构成了电压跟随器

  16. 例4.1有一理想集成运放电路接线如图所示,已知ui=1V,R1=20kΩ,Rf=200kΩ,试求输出电压uo及平衡电阻R2。例4.1有一理想集成运放电路接线如图所示,已知ui=1V,R1=20kΩ,Rf=200kΩ,试求输出电压uo及平衡电阻R2。 • 解:(1)此电路为反相放大器, • (2)

  17. 例4.2 在下图所示电路中,已知Rf=2R1,R3=2R2,ui=1V,试求输出电压uo。 • 解:图示电路可以分解成两个运算放大器,A1构成电压跟随器,A2构成同相比例运算放大器。因此,对A1来说,uo1= ui;对A2来说,

  18. 3.反相加法器电路 集成运放构成反相放大器,u1、u2为相加电压,uo为和电压。当取R1=R2=Rf时,A=1,输出电压uo=-(u1+ u2),实现了加法运算。R3为平衡电阻(为保证同相输入和反相输入端参数对称,取R3= R1∥R2∥Rf),用于平衡输入偏置电流造成的失调。

  19. 4.相减器(差动运算电路) • 利用叠加原理进行分析计算, • 得 当取R1=R2= R3= Rf时,A=1,输出电压uo= u2-u1,实现了减法运算。R3为平衡电阻。

  20. 例4.3 在下图所示电路中,已知R1=R2=R3=Rf,u1=1V,u2=3V,试求输出电压uo。 解:此电路构成了一个减法器,因R1=R2=R3=Rf,故可得出 uo= u2-u1=3-1=2V

  21. 想一想: 1.理想集成运放工作在线性区时,有哪两个特点(即重要结论)? 2.比例运算电路的闭环电压放大倍数是否与反馈电阻和输入电阻以及集成运放本身参数均有关系? 3.什么是“虚短”、“虚断”、“虚地”?同相输入电路是否存在“虚地”?

  22. 做一做:集成运放的仿真测试 1.电压跟随器仿真电路 电压跟随器仿真数据记录

  23. 2.反相比例放大器 仿真电路 反相比例放大器仿真数据记录

  24. 3.同相比例放大器 仿真电路 同相比例放大器仿真数据记录

  25. 4.相减器 仿真电路 相减器仿真数据记录

  26. 5.反相加法器 仿真电路 反相加法器仿真数据记录

  27. 做一做:集成运放的实验测试 反相比例运算 实验电路 在反相输入端加入直流信号Ui,依次将Ui调到-0.4V、-0.2V、+0.2V、+0.4V,用万用表测量出每次对应的输出电压Uo,记录在下表中。

  28. 反相比例运算 实验电路 从函数信号引入f =1kHz、Ui=0.5V的正弦交流信号,用示波器测量相应的Uo,并观察Uo和Ui的相位关系,记入下表中。

  29. 同相比例运算 实验电路 在同相输入端加入直流信号Ui,依次将Ui调到﹣0.4V、﹣0.2V、+0.2V、+0.4V,用万用表测量出每次对应的输出电压Uo,记录在下表中。

  30. 同相比例运算 实验电路 从函数信号引入f =1kHz、Ui=0.5V的正弦交流信号,用示波器测量相应的Uo,并观察Uo和Ui的相位关系,记入到下表中。

  31. 电压跟随器 实验电路 从函数信号引入f =1kHz、Ui=0.5V的正弦交流信号,用示波器测量相应的Uo,并观察Uo和Ui的相位关系,记入到下表中。

  32. 反相加法 实验电路 在电阻R1端加入直流信号电压Ui1,在电阻R2端加入直流信号电压Ui2,依下表调整Ui1、Ui2,用万用表测量出每次对应的输出电压Uo,记录在下表中,

  33. 减法器(差动放大器) 实验电路 在电阻R1端加入直流信号电压Ui1,在电阻R2端加入直流信号电压Ui2,依下表调整Ui1、Ui2,用万用表测量出每次对应的输出电压Uo,记录在下表中,

  34. 任务目标: 1.了解集成运算放大器在线性系统中的应用; 2.理解集成运放在低频正弦波信号的产生电路中的作用 任务教学方式: 教学建议:集成运放构成的RC振荡器讲解时,可结合前面所学的由分立元件组成RC正弦波振荡器,来进行电路结构比较 任务2 集成运放在波形变换发生方面的应用

  35. 知识 产生低频正弦波信号的电路 当集成运放应用于产生正弦波、矩形波(方波)和锯齿波等不同类型的波形时,其工作状态并不相同。通常在产生正弦波的电路中,集成运放可以作为放大环节,再配以一定的选频网络等,即可产生正弦波振荡,所以其中的运放基本上工作在线性区。但是,对于产生矩形波或锯齿波的电路,它们实质上是脉冲电路,其中的运放作为一个开关元件,输出电压只有两种状态,因此,它们大都工作在非线性区。 任务2 集成运放在波形变换发生方面的应用

  36. 如右图所示为采用集成运放的1kHz文氏桥式正弦波振荡器,R1、C1和R2、C2构成正反馈回路,并具有选频作用,使电路产生单一频率的振荡。R3、R4、R5等构成负反馈回路,以控制集成运放IC的闭环增益,并利用并联在R5上的二极管VD1、VD2的箝位作用进一步稳定振幅。电路谐振中心频率如右图所示为采用集成运放的1kHz文氏桥式正弦波振荡器,R1、C1和R2、C2构成正反馈回路,并具有选频作用,使电路产生单一频率的振荡。R3、R4、R5等构成负反馈回路,以控制集成运放IC的闭环增益,并利用并联在R5上的二极管VD1、VD2的箝位作用进一步稳定振幅。电路谐振中心频率 集成运放构成的RC振荡电路 1 1

  37. 右图中,由三节RC高通电路组成的反馈网络(兼选频网络),其最大相移可接近270º,因此有可能在特定频率fo下移相180º,即φf=180º。考虑到放大电路产生的相移(运放的输出与反相输入端比较)φa=180º,则有φa+φf=360º或 0º。显然,只要适当调节Rf的值,使Auf适当,就可同时满足相位和振幅条件,产生正弦波信号。 可以证明,这种振荡电路的振荡频率为 移相式RC振荡器

  38. 做一做: 运算放大器构成的RC振荡器仿真测试 由M318构成的振荡器

  39. 任务目标: 1.了解集成运算放大器和电压比较器在线性系统中的应用; 2.掌握温度指示器的工作原理 任务教学方式: 教学建议:结合投影等多媒体课件,着重讲电压比较器的基本特性;而电压比较器的开环应用只简单描述 任务3 集成运放在信号处理方面的应用

  40. LM324 LM324 热敏电阻 电位器 电源二线插座 温度指示器实物外形

  41. 知识1 信号频率的有源滤波 在各种有源滤波和采样保持电路中,运放一般工作在线性区,而在信号幅度的比较和选择电路中,运放常常工作在非线性区。 滤波器或滤波电路是一种能使某一部分频率比较顺利地通过而另一部分频率受到较大衰减的装置,常用在信息处理、数据的传送和干扰的抑制等方面。 任务3 集成运放在信号处理方面的应用

  42. 用集成运放可方便地构成有源滤波器,包括低通滤波器、高通滤波器、带通滤波器等。用集成运放可方便地构成有源滤波器,包括低通滤波器、高通滤波器、带通滤波器等。 右图所示为前级二分频电路。 集成运放IC1A等构成二阶高通滤波器,IC1B等构成二阶低通滤波器,将前置放大器来的全音频信号分频后分别送入两个功率放大器,然后分别推动高音扬声器和低音扬声器。 集成运放构成的有源滤波器

  43. 知识2 信号幅度的比较电路 电压比较器,简称比较器,实际上是一个高增益、宽频带放大器,其符号与运放符号一样。它与运放的主要区别在于比较器的输出电压为两个离散值,通常称为高/低电平,相当于数字电路中的逻辑“1”和“0”。 功能:将一个模拟输入电压信号与一个参考电压相比较,根据比较结果,输出一定的高低电平。将模拟信号转成数字信号。 构成:运放组成的电路处于非线性状态,输出与输入的关系uo= f (ui)是非线性函数。 任务3 集成运放在信号处理方面的应用

  44. 比较器可分为过零比较器、单限比较器、滞回比较器、双限比较器。比较器可分为过零比较器、单限比较器、滞回比较器、双限比较器。 1.电压比较器的开环应用——单门限比较器(与参考电压比较) uo +Uom ui 0 -Uom 若ui从同相端输入时符号及传输特性 输入电压ui加在同相端,参考电压UREF置于反相端。当ui > UREF时,即u+>u-,集成运放正向饱和,比较器uo = +Uom(高电平);当ui < UREF时,uo = -Uom(低电平) 。

  45. 输入电压ui加于反相端,参考电压UREF(设为正值)加在同相端。当ui < UREF时, 即u-<u+,比较器uo = +Uom;当ui >UREF时,即u->u+,比较器uo = -Uom。 uo +Uom ui 0 -Uom 若ui从反相端输入时符号及传输特性

  46. 2.电压比较器的开环应用——过零比较器:(门限电平=0)2.电压比较器的开环应用——过零比较器:(门限电平=0) +UOM uo uo -UOM ui 0 ui 0 +UOM -UOM 输入信号加在反相输入端,同相端接“地”。相当于同相端加了参考电压为“零”的值。此时,参考电压UREF=0。过零比较器门限电平为零也属于单限比较器(只是电平为零的单限比较器)。

  47. 过零电路可做为零电平检测器,也可用于“整形”,将不规则的输入波形整形成规则的矩形波。例如,利用电压比较器(过零比较器)将正弦波变为方波。 ui uo t t +Uom -Uom

  48. 3. 限幅电路——使输出电压为一稳定的确定值 (1)用稳压管稳定输出电压。 uo 忽略了UD ui 0 +UZ -UZ 当ui > 0时,uo = +UZ(稳压管DZ的稳压值);当ui < 0时,uo = -UZ。

  49. (2)稳幅电路的另一种形式——将双向稳压管接在负反馈回路中。 uo 0 ui +UZ -UZ

  50. *4.迟滞比较器 迟滞比较器由于电路中使用正反馈,因此运放工作在非线性区。 工作原理:有两个门限电压。UT+称上门限电压,UT-称下门限电压。UT+–UT-称为回差电压。 uo +UZ ui UT+ UT- 0 -UZ

More Related