1 / 15

GEM 型放射線イメージング装置用フロントエンド LSI の開発

GEM 型放射線イメージング装置用フロントエンド LSI の開発. 2007 年 12 月 15 日 4 th MPGD 研究会@大阪市大 房安貴弘 1 * 、佐野哲 2 、田中義人 1 、浜垣秀樹 2 1 長崎総合科学大学 2 東京大学原子核科学研究センター. Motivation. GEM を用いた X 線イメージングや中性子線イメージングのため、専用のフロントエンド LSI を開発。. X 線の場合。 考古学のフィールドワークや医療用など. 中性子線の場合。 エンジン中の液体の動的観察など. Pixel Readout Method.

aleta
Télécharger la présentation

GEM 型放射線イメージング装置用フロントエンド LSI の開発

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GEM型放射線イメージング装置用フロントエンドLSIの開発GEM型放射線イメージング装置用フロントエンドLSIの開発 2007年12月15日 4th MPGD研究会@大阪市大 房安貴弘1*、佐野哲2、田中義人1、浜垣秀樹2 1長崎総合科学大学 2東京大学原子核科学研究センター

  2. Motivation • GEMを用いたX線イメージングや中性子線イメージングのため、専用のフロントエンドLSIを開発。 X線の場合。 考古学のフィールドワークや医療用など 中性子線の場合。 エンジン中の液体の動的観察など

  3. Pixel Readout Method ① Pixels on LSI ② Multiple LSI’s Max Size = 2cm x 2cm 2 x 2 LSI’s are maximumbecause of bonding pads → Max size = 4cm x 4cm NIM A535 (2004) 477 ④ Use TFT process for LCD ③ PCB Bd Difficulty inwiring. → Min. pixel size = about 1mm2 Difficulty in availability

  4. Incident signalon GEM sheet Trigger Clock Analog Out ・・・・・・・・・・・ CH1 2 3 4 5 Readout Circuit For Still X-ray Imaging • Still Imaging. • We want to obtain information per particle.

  5. Readout Circuit For Motion Imaging by Neutron Imaging rate = about 100rps x 10frames = 1000fps → Need fast readout Frame Signal • 1ms積分の後、読出し、放電。 • 放電直後のベースライン電位も測定。

  6. Prototype Strategy • w/o peak-hold circuit and shaper because of integration mode for neutron imaging. • w/o output buffer. • Trigger is given by user. • Use TSMC 0.25mm1P5M n-well process.VDD=2.5V.

  7. Shift Register Compensating dummy switch Discharge switch from the previous channel to thenext channel SwitchControl 1pF Pixel Charge Input 1pF MUX Folded-CascodeOPamp Over-VoltageProtectionW/L=8mm/4mm Test Pulse Input Schematic of Channel

  8. Schematic of OP amp OP amp feature obtained by simulation Standard Folded-Cascode OP amp

  9. Layout Design Process: TSMC 0.25mm 1P5M n-well Chip size: 5mm×2.5mm The design has been submitted for fabrication. The chip has been obtained in Nov/2007. 1ch circuit 5mm 230um MUX OPamp Shift Register switch Capacitors 2.5mm

  10. Layout Simulation • Parasitic RC’s are extracted. Analog Output of the Chip (i.e. MUX out) Rise time = 50ns. Setting time = 160ns (0.1%). Droop of the Capacitor 7mV droop during a frame period, of which 4mV is due to the discharge switch.

  11. Layout Simulation • Total power dissipation of the chip : 75mW • Crosstalk between neighboring channels : 0.01% • Clock migration to the analog out : 10mVpp

  12. PCB Design

  13. PCB Circuits • LSIからの出力領域   0.75-1.75V (Vref=0.75V) • ADC(AD7825)のconversion 領域   0-2.5V 0.75-1.75V 0.1-2.4V ADC : 8bit 3.3p 1k 1.3k 1.5V 1k 1.5k

  14. PCB Fabricated with ASIC

  15. Summary and Future • Frontend ASIC for GEM imaging was fabricated using TSMC 0.25mm process. • Layout simulation has been done. • System test using GEM chamber will be performed @ CNS. • Single chip test will be performed @ Nagasaki. • Integrate with pipelined ADC?

More Related