1 / 73

Cosmic Ray Study The PAMELA Experiment

Cosmic Ray Study The PAMELA Experiment. Piergiorgio Picozza INFN and University of Rome Tor Vergata 23 rd  European Cosmic Ray Symposium Moscow, Russia July 3 – 7, 2012. PAMELA. P ayload for A ntimatter M atter E xploration and L ight Nuclei A strophysics.

alicia
Télécharger la présentation

Cosmic Ray Study The PAMELA Experiment

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cosmic Ray Study The PAMELA Experiment Piergiorgio Picozza INFN and University of Rome Tor Vergata 23rd European Cosmic Ray Symposium Moscow, Russia July 3 – 7, 2012

  2. PAMELA Payload for Antimatter Matter Exploration and Light NucleiAstrophysics

  3. PAMELALaunch15/06/0670° inclination350-610 Km altitudesince 2011: 500 Km16 Gigabytestrasmitteddaily to GroundNTsOMZ Moscow

  4. Italy: CNR, Florence Bari Florence Frascati Naples Rome Trieste Russia: Moscow St. Petersburg Germany: Sweden: Siegen KTH, Stockholm PAMELA Collaboration

  5. PAMELA Instrument GF ~21.5 cm2sr Mass: 470 kg Size: 130x70x70 cm3

  6. MDR 1.2 TeV

  7. Antiproton / Positron Identification Time-of-flight: trigger, albedo rejection, mass determination (up to 1 GeV) Bending in spectrometer: sign of charge Ionisation energy loss (dE/dx): magnitude of charge Interaction pattern in calorimeter: electron-like or proton-like, electron energy Antiproton (NB: e-/p ~ 102) Positron (NB: p/e+ ~103-4)

  8. PAMELA Cosmic Ray Spectra

  9. e-

  10. Proton and Helium fluxes p He Science 332,69 (2011)

  11. Proton and Helium fluxes

  12. Proton Flux

  13. Helium Flux

  14. Proton to Helium ratio

  15. Proton and Helium fluxes PAMELA

  16. 2H 3He

  17. 2H/1H 3He/4H4

  18. Boron and Carbon nuclei Spectra Carbon Boron

  19. Lithium Preliminary Results

  20. Beryllium Preliminary Results

  21. Antiparticles with PAMELA

  22. THE UNIVERSE ENERGY BUDGET

  23. DM annihilations DM particles are stable. They can annihilate in pairs. Primary annihilation channels Final states Decay σa= <σv>

  24. Antiproton Flux(0.06 GeV – 250 GeV) Donato et al. (ApJ 563 (2001) 172) Ptuskin et al. (ApJ 642 (2006) 902)

  25. Antiproton to proton ratio (0.06 GeV - 180 GeV) Simon et al. (ApJ 499 (1998) 250) Ptuskin et al. (ApJ 642 (2006) 902) Donato et al. (PRL 102 (2009) 071301) PRL 102, 051101 (2009) and PRL. 105, 121101 (2010)

  26. Antiproton to proton flux rationew data

  27. Positron to Electron Fraction(2 GeV – 300 GeV) GALPROP

  28. PAMELA Electron flux Phys. Rev. Lett. 106, 201101 (2011)

  29. Positron Flux

  30. A Challenging Puzzle for Dark Matter Interpretation

  31. Phys.Rev.D79:103529,2009 Phys.Rev.D8:103520,2008

  32. Electron Spectrum Flux=A • E-  = 3.18 ±0.05 e- e+ + e-

  33. Fermi (e++ e-) and PAMELA ratioBergstrom et al. Phys.Rev.Lett.103:031103,2009

  34. All electrons

  35. A NEUTRON STAR WITH A STRONG MAGNETIC FIELD: FAST ROTATING PULSAR (P = 33 msec) L(spindown) = 5 1038 erg/s

  36. Example: pulsars H. Yüksel et al., arXiv:0810.2784v2 Contributions of e- & e+ from Geminga assuming different distance, age and energetic of the pulsar Hooper, Blasi, and SerpicoarXiv:0810.1527 Mirko Boezio, LHC & DM Workshop, 2009/01/06

  37. A Challenging Puzzle for CR Physics P.Blasi, PRL 103 (2009) 051104; 4 Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated. S: Sarkar Phys.Rev.Lett.103:081104,2009 arXiv:1108.1753. Nearby sources But also other secondaries are produced: significant increase expected in the p/p and B/C ratios. Y. Fujita Phys.Rev.D80:063003,2009 N.J. Shaviv et al., PRL 103 (2009) 111302;

  38. Solar Modulation of galactic cosmic rays Pamela AMS-01 Caprice / Mass /TS93 BESS Study of solar modulation Study of chargesigndependenteffects Asaoka Y. et al. 2002, Phys. Rev. Lett. 88, 051101), Bieber, J.W., et al. Physi-calReviewLetters, 84, 674, 1999. J. Clem et al. 30th ICRC 2007 U.W. Langner, M.S. Potgieter, Advances in Space Research 34 (2004)

  39. Cosmic-Ray Antiprotons and DM limits D. G. Cerdeno, T. Delahaye & J. Lavalle, arXiv: 1108:1128 Antiproton flux predictions for a 12 GeV WIMP annihilating into different mass combinations of an intermediate two-boson state which further decays into quarks. See also: • M. Asano, T. Bringmann & C. Weniger, arXiv:1112.5158. • M. Garny, A. Ibarra & S. Vogl, arXiv:1112.5155 • R. Kappl & M. W. Winkler, arXiv:1140.4376

  40. PAMELA Positron Fraction Preliminary Secondary production Moskalenko & Strong 98 GALPROP Mirko Boezio, Innsbruck, 2012/05/29

  41. Galactic proton and helium modulation H He

  42. Galactic proton modulation Time protons 2009 2008 2007 2006

  43. electrons positrons positrons

  44. Galactic proton modulation – flux evolution in time Galactic proton modulation – flux evolution in time

  45. December 2006 Solar particle events Dec 13th largest CME since 2003, anomalous at sol min

  46. December 13th 2006 event Preliminary!

  47. December 13th 2006 He differential spectrum Preliminary!

  48. X-ray X-ray P,e- P,e- Arrival of event of Dec 14th Magnetic Field Magnetic Field Neutron Monitor Neutron Monitor Decrease of primary spectrum Arrival of magnetic cloud from CME of Dec 13th Shock 1774km/s (gopalswamy, 2007) Decrease of Neutron Monitor Flux December 14th 2006: Forbush decrease Low energy tail of Dec 13th event Solar Quiet spectrum Below galactic spectrum: Start of Forbush decrease

  49. Forbush decrease – protons

More Related