1 / 13

Cardiovascular system

Organelle. Atoms. Molecule. Smooth muscle cell. Cellular level Cells are made up of molecules. 2. Chemical level Atoms combine to form molecules. 1. Smooth muscle tissue. Cardiovascular system. Tissue level Tissues consist of similar types of cells. 3. Heart. Blood vessels.

alton
Télécharger la présentation

Cardiovascular system

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Organelle Atoms Molecule Smooth muscle cell Cellular levelCells are made up ofmolecules. 2 Chemical levelAtoms combine to form molecules. 1 Smooth muscle tissue Cardiovascularsystem Tissue levelTissues consist of similartypes of cells. 3 Heart Bloodvessels Blood vessel (organ) Smooth muscle tissue Connective tissue Epithelialtissue Organ levelOrgans are made up of different typesof tissues. 4 Organismal levelThe human organism is made upof many organ systems. Organ system levelOrgan systems consist of differentorgans that work together closely. 6 5 Figure 1.1

  2. Digestive system Takes in nutrients, breaks them down, and eliminates unabsorbed matter (feces) Respiratory system Takes in oxygen and eliminates carbon dioxide Food O2 CO2 Cardiovascular system Via the blood, distributes oxygen and nutrients to all body cells and delivers wastes and carbon dioxide to disposal organs Blood CO2 O2 Urinary system Eliminates nitrogenous wastes and excess ions Heart Nutrients Interstitial fluid Nutrients and wastes pass between blood and cells via the interstitial fluid Integumentary system Protects the body as a whole from the external environment Feces Urine Figure 1.2

  3. Necessary Life Functions • Maintaining boundaries between internal and external environments • Movement (contractility) • Responsiveness: The ability to sense and respond to stimuli • Digestion

  4. Necessary Life Functions • Metabolism: All chemical reactions that occur in body cells • Excretion: The removal of wastes from metabolism and digestion • Reproduction • Growth: Increase in size of a body part or of organism

  5. Survival Needs • Nutrients • Oxygen • Water • Normal body temperature • Appropriate atmospheric pressure

  6. Homeostasis

  7. 1 IMBALANCE Stimulusproduceschange invariable. BALANCE IMBALANCE Figure 1.4, step 1

  8. 2 Receptor Receptordetectschange. 1 IMBALANCE Stimulusproduceschange invariable. BALANCE IMBALANCE Figure 1.4, step 2

  9. 3 Input: Informationsent along afferentpathway to controlcenter. ControlCenter Afferentpathway 2 Receptor Receptordetectschange. 1 IMBALANCE Stimulusproduceschange invariable. BALANCE IMBALANCE Figure 1.4, step 3

  10. 4 Output:Information sent alongefferent pathway toeffector. 3 Input: Informationsent along afferentpathway to controlcenter. ControlCenter Afferentpathway Efferentpathway 2 Receptor Effector Receptordetectschange. 1 IMBALANCE Stimulusproduceschange invariable. BALANCE IMBALANCE Figure 1.4, step 4

  11. 4 Output:Information sent alongefferent pathway toeffector. 3 Input: Informationsent along afferentpathway to controlcenter. ControlCenter Afferentpathway Efferentpathway 2 Receptor Effector 5 Receptordetectschange. Responseof effectorfeeds backto reducethe effect ofstimulusand returnsvariable tohomeostaticlevel. 1 IMBALANCE Stimulusproduceschange invariable. BALANCE IMBALANCE Figure 1.4, step 5

  12. Control Center (thermoregulatory center in brain) Information sent along the afferent pathway to control center Information sent along the efferent pathway to effectors Efferent pathway Afferent pathway Receptors Temperature-sensitive cells in skin and brain Effectors Sweat glands Sweat glands activated Response Evaporation of sweat Body temperature falls; stimulus ends Stimulus Body temperature rises BALANCE Stimulus Body temperature falls Response Body temperature rises; stimulus ends Receptors Temperature-sensitive cells in skin and brain Effectors Skeletal muscles Afferent pathway Efferent pathway Shivering begins Information sent along the efferent pathway to effectors Information sent along the afferent pathway to control center Control Center (thermoregulatory center in brain) Figure 1.5

  13. 1 Break or tearoccurs in bloodvessel wall. Positive feedbackcycle is initiated. 3 2 Releasedchemicalsattract moreplatelets. Plateletsadhere to siteand releasechemicals. Positivefeedbackloop Feedback cycle endswhen plug is formed. 4 Platelet plugforms. Figure 1.6

More Related