1 / 49

フレーバーの離散対称性と ニュートリノフレーバー混合

フレーバーの離散対称性と ニュートリノフレーバー混合. 22 February 2008 仙台市 作並温泉 谷本盛光 ( 新潟大学 ). Introduction Neutrinos: Windows to New Physics. Neutrino Oscillations provided information. ● Tiny Neutrino Masses ● Large Neutrino Flavor Mixings. Flavor Symmetry. Global fit for 3 flavors

amal-riggs
Télécharger la présentation

フレーバーの離散対称性と ニュートリノフレーバー混合

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. フレーバーの離散対称性とニュートリノフレーバー混合フレーバーの離散対称性とニュートリノフレーバー混合 22 February2008 仙台市 作並温泉 谷本盛光 (新潟大学 )

  2. IntroductionNeutrinos: Windows to New Physics Neutrino Oscillations provided information ●Tiny Neutrino Masses ●Large Neutrino Flavor Mixings Flavor Symmetry

  3. Global fit for 3 flavors Maltoni et al : hep-ph/0405172 ver.6 (Sep 2007)

  4. Two Large Mixings Tri-bi maximal 2 2 (Δmsol / |Δmatm| )1/2 = 0.16 - 0.20 ≒λ

  5. Tri-Bi-Maximal Harrison, Perkins, Scott (2002) sin2θ12=1/3 , sin2θ23 =1/2

  6. Neutrino Mixing closes to Tri-bi maximal mixing ! Tri-bi maximal mixing provides good theoretical motivation to search flavor symmetry. A key to looking for “hidden” flavor symmetry.

  7. Mixing angles are independent of mass eigenvalues Different from quark mixing angles

  8. 2Discrete Flavor Symmetry Non-Abelian Flavor Symmetry is appropriate for lepton flavor physics.

  9. Quark Sector

  10. Discrete symmetric models have long history . . . Pakvasa and Sugawara (’78): S3 Chang, Keung and Senjanovic, (’90) Frampton and Kephart (’94), Frampton and Kong (’95) Grimus and Lavoura (’03): D4 Frampton and Rasin (’99): D4, Q4 Frigerio, S.K., Ma and Tanimoto (’04): Q4 Kubo et al. (’03,’04,’05): S3 Babu and Kubo (’04): Q6 . . . . . . . . . . . Discrete Symmetry Non-Abelian discrete groups have non-singlet irreducible representations which can be assigned to interrelate families.

  11. Need some ideas to realize Tri-bi maximal mixing by S3 flavor symmetry

  12. 3A4Model 1 1’ 1” 3 by E. Ma

  13. by E. Ma

  14. Diagonal terms come from3 × 3 → (1, 1’,1”) 1’ ×1” → 1 Off Diagonal terms come from3 × 3×3→ 1

  15. hiare yukawa couplings; vi are VEV

  16. Move to diagonal basis of the charged lepton mass matrix

  17. What is the origin of b=c and e=f=0 ? Can one predict the deviation from Tri-bi maximal mixing ? In order to answer this question, we should discuss the model: Altarelli, Feruglio, Nucl.Phys.B720:64-88,2005 Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions

  18. hd (1) , hu (1) : gauge doublets gauge singlets b=c and e=f=0 is requiredfor Tri-bi maximal.

  19. Deviations from Tri-bi maximal mixing • M.Honda and M. Tanimoto, arXiv:0801.0181

  20. Deviations in Charged Lepton Sector

  21. CP violating phases

  22. Deviations in Charged Lepton Sector b=c=0 e=f=0

  23. 5Discussions Experiments indicate Tri-bi maximal mixingfor Leptons, which is easily realized inA4flavor symmetry. Desired vacuum Deviation from Tri-bi maximal mixing is important to test A4 flavor symmetry. does not deviate from 1 largely due to A4 phase. can deviate from 0.5 largely. can be as large as 0.2.

  24. Can we predict CKM Quark Mixing angles in A4 flavor symmetry ? Quark mass matrices are given as There is no Quark mixing while tri-bi maximal mixing for Leptons. Deviation is a clue to deeper understanding of flavor symmetry !

  25. What is the origin of the Discrete Symmetry ? Stringy origin of non-Abelian discrete flavor symmetries: Tatsuo Kobayashi, Hans Peter Nilles, Felix Ploger , Stuart Raby , Michael Ratz Nucl.Phys.B768:135-156,2007.

  26. arXiv:0802.2310 Hajime Iashimori, Tatsuo Kobayashi, Ohki Hiroshi Yuji Omura, Ryo Takahashi, Morimitsu Tanimoto

  27. SUSY化が 容易にできる D4モデルが構成できる。SUSY化が 容易にできる D4モデルが構成できる。 ・FCNCの抑制の大きさが予言できる。 ・Slepton の質量行列の構造が予言できる。 LHCでのテスト可能   再び クォークセクターは?

  28. Hirsch, Ma, Moral, Valle: Phys. Rev. D72(2005)091301(R) LlcΦi 3 ×3×(1,1’,1”)←Diagonal matrix LLηi3 ×3 ×(1,1’,1”) LLξ3 ×3 × 3 < Φi >=v1, v2, v3

  29. Bi - Maximalθ12=θ23 =π/4 , θ13 =0 Tri - Bi-maximal θ12≒35°,θ23 =π/4 , θ13 =0

  30. A4 flavor symmetry can easily realize (approximate or exact) Tri-Bi-maximal Mixing A4 symmetry (Tetrahedral Symmetry)

  31. Landau and Lifschitz(理論物理学教程 量子力学12章対称性の理論 点群)群T(正四面体群):正4面体の対称軸系立方体の向かい合った面の中心を通る3っの2回対称軸とこの立方体の空間対角線である4っの3回対称軸(二面的ではない)二つの同じ角度の回転は、もしも群の元の中に、一方の回転軸を他の回転軸に重ねるような変換があれば、同じ類に属する。定義: ある物体がある軸のまわりを角度 2π/n回転するとき自分自身に     重なり合うとすれば、このような軸はn回対称軸と呼ばれる。同じ軸の周りの、同じ角度の、反対方向の回転が共役ならば、     この軸を二面的と呼ぶ。従って、 群Tの12の元(回転)は4っの類に分類される。E(単位元)  C2(4っの回転)  C3(4っの回転)  C4(3っの回転)

  32. Tri - Bi-maximal θ12≒35°,θ23 =π/4 , θ13 =0 A, B, C are independent complex parameters

  33. S-Kam Atmospheric Neutrino Data

  34. MINOS Experiment SK atmospheric neutrinos

  35. KamLand

  36. Numerical Results: Deviations from Tri-bi maximal mixing.

More Related