1 / 22

Compositi a matrice termoplastica: perché?

Compositi a matrice termoplastica: perché?. Le resine termoindurenti sono fragili non possono essere rifuse o ri-formate. I termoplastici sono tenaci e possono erre ri-fusi e ri-formati, (polietilene, nylon, polipropilene..). Altri vantaggi dei compositi a matrice termoplastica:

andrew
Télécharger la présentation

Compositi a matrice termoplastica: perché?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Compositi a matrice termoplastica: perché? • Le resine termoindurenti sono fragili non possono essere rifuse o ri-formate. • I termoplastici sono tenaci e possono erre ri-fusi e ri-formati, (polietilene, nylon, polipropilene..). • Altri vantaggi dei compositi a matrice termoplastica: • La frazione in volume di fibre può essere variata nello spessore (da 0 to ~65%-) • Robustezza, dovuta alla tenacità dei sistemi termoplastici • Impatto ambientale in genere minore dovuto alla possibilità di ri-formare i pezzi, riciclarli e saldarli • Minor costo delle materie prime e prolungata “shell life” • Potenzialmente adatti per processi di lavorazione più veloci compositi

  2. HDPE PP ABS PA12 PPE PEEK PPS Fibre di vetro Fibre di carbonio aramidi, poliammidi poliesteri polietilene polipropilene Matrici TP Rinforzo compositi

  3. Poli(fenilen etere) PPE PPE, è un engineering thermoplastics, molto resistente alle alte temperature. (Tg 210 oC) Per questo molto spesso è usato in miscela (blends) con HIPS. La miscelazione rende il sistema più facile alla lavorazione e con buona resilienza. (PPE da solo è molto fragile) General Electric vende PPO/HIPS blends con il nome di NorylTM. compositi

  4. Polichetoni Cristallini (30%), trasparenti buone proprietà meccaniche Tg 143°C, Tm 334°C per parti soggette ad alte temperature (240-280°C) e in mezzi aggressivi nei trasporti, reattori chimici in elettronica compositi

  5. Poli(fenilen solfuro) PPS Altamente cristallino (60%), Tg 85°C, Tm 285°C per usi in continuo a 200-240°C, resistenti alla fiamma, resistenti a acidi e basi ma meno agli agenti ossidanti. Per apparecchiature in cucina, nel settore automotive ed industriale compositi

  6. Componentistica per biciclette da corsa • Giubbotti di salvataggio • Elmetti • Schienali di zaini • Componenti di ali di aerei Applicazioni Applicati specialmente per materiali “leggeri” ad alte prestazioni Hanno buona resilienza (resistenza all’impatto) e inerzia chimica : compositi

  7. producer: producer: producer: producer: Fokker Special Products Campagnolo Cato Composites Halmatic material: material: material: material: Twintex glass/PP TEPEX aramid/PA6 glass/PPS Tepex carbon/PA6.6 production volume: production volume: production volume: production volume: > 100.000/year < 100/year 50.000/year ~ 500/year production process: production process: production process: production process: vacuum moulding vacuum moulding high spead pressing high speed pressing application reasons:   application reasons:   application reasons:   application reasons:   superior performance, automation, cost stiffness/weight, reduction parts number, cost weight, quality, cycle times, automation, costs cost, impact resistance, emission harmful gasses • racing bicycle components • lifeboat • antiballistic helm • wing leading edge compositi

  8. LAVORAZIONE DEI COMPOSITI TERMOPLASTICI • Per formare i compositi a matrice termoplastica i polimeri devono essere : • fusi o rammolliti • mescolati intimamente con le fibre • messi in forma, • Non avvengono reazioni chimiche a differenza di quanto accade con i materiali termoindurenti. • Svantaggi: maggior difficoltà di impregnazione delle fibre in confronto ai materiali compositi a matrice termoindurente a causa dell’elevataviscosità del fuso termoplastico (tra 10-100 Pa.s. in confronto a 0.2-2Pa.s. dei sistemi termoindurenti). compositi

  9. compositi

  10. LAVORAZIONE DEI COMPOSITI TERMOPLASTICI • Processi a 2 stadi • Primo stadio: formazione del “precursore”: • Commingled fibres: tows of continuous fibres of glass or carbon intermingled with continuous fibres of the polymer • Prepregs: Reinforcement fibres impregnated with a polymer matrix in the form of thin sheets • Powder impregnated tows: Continuous tows of fibres are impregnated with thermoplastic powder giving a flexible ribbon or sheet • Fibre Impregnated Thermoplastic, FIT: Powder impregnated continuous fibres encased in a polymer sheath • Short and long fibre reinforced polymer pellets: compounded for subsequent extrusion or injection moulding compositi

  11. Prepregs: (fogli preimpregnati) Via secca Via umida compositi

  12. Filamento di Rinforzo Filamento di Polimero sezione Sandwich di un tessuto di rinforzo tra due film di termoplastico Commingled fibres (commistione di fibre) Commistione realizzata in situ per ottenere un distribuzione omogenea delle due popolazioni di fibre compositi

  13. Fibre preimpregnate Powder impregnated tows (con polveri) Fibre Impregnated Thermoplastic, FIT (in guaina) compositi

  14. Short and long fibres reinforced polymer pellets Fibra corta <1mm Pellets rinforzati Fibra lunga <1cm compositi

  15. LAVORAZIONE DEI COMPOSITI TERMOPLASTICI • Processi a 2 stadi. • Secondo stadio formazione del precursore nel manufatto finale. • Si possono usare diverse tecnologie di messa in forma • Stampaggio • Commistione di fibre • Laminazione (prepregs) compositi

  16. Stampaggio • Large scale production of reinforced thermoplastics has so far centred on the injection moulding or extrusion of long and short fibre reinforced pellets. Here the fibres are incorporated to improve mechanical performance of the resultant moulding. • short fibre - fibres of up to 3mm in length • long fibre - fibres up to 13mm in length During processing most fibres are damaged The orientation of the fibres is determined by the shear profile within the die or mould. The reinforcing effect is greatest in the direction of the fibre. compositi

  17. Commistione di Fibre: • Commingled fibres are fibres of the polymer and reinforcement fibre intermingled together. As with all precursors they are only available in a fixed volume fractions, and limited range of colours, polymer types, additives etc. pultrusion is the most common processing for commingled fibres compositi

  18. Laminazione (Prepregs): • Prepregs are sheets or tapes of reinforcement fibres pre-impregnated with a thermoplastic resin. They can then be laid and stacked up to form a composite structure. Unlike thermoset prepreg they are not tacky and require very different treatment to their thermoset matrix counterparts. • Thermoforming is a suitable technology for prepregs compositi

  19. Filament winding Pultrusion Thermoforming Compression Moulding compositi

  20. Potenzialità dei compositi termoplastici • The broader use of advanced composites is currently inhibited by high material and manufacturing costs. Thermoplastics are generally low cost. The processing steps for the manufacture of thermoplastic composites are much simpler than for thermoset as no chemical reactions are involved. However, existing thermoplastic composite manufacturing routes are all two stage processes. The full potential of thermoplastic composites will not be achieved until a one stage manufacturing method has been developed. • one stage manufacturing process for the production of thermoplastic composite profiles with the aesthetics of an extrusion and the mechanical performance of a fibreglass pultrusion • one stage process for the manufacture of selectively reinforced extruded profiles • Manufacturing process for the production of prepreg tapes with high fibre alignment compositi

  21. Reinforcement of profiles This technology allows the use of variable fibre reinforcement levels of 0% to about 65% by volume across the profile. By careful design of the profile it is possible to restrict the area of the reinforcement to the region where it provides most mechanical benefit, with the rest of the profile being formed with the cheaper polymer. The overall stiffness is very similar to conventional composites even though the reinforcement level is greatly reduced. This is especially useful when expensive carbon fibres are employed.. Even though carbon fibres are more expensive than glass fibres this need not be reflected in the profile cost. It could also provide a further advantage in terms of reduced weight. compositi

  22. compositi

More Related