1 / 27

Na + 117 A - 0 K + 3 Cl - 120

Model cell. Intracellular. Extracellula r. +. 30 116 90 4. -. Na + 117 A - 0 K + 3 Cl - 120. +. -. +. +. K + , Cl - à permeab le. Na + , A - à n on permeable. Nernst equation. K + equilibrium potential: no net K + movement.

annot
Télécharger la présentation

Na + 117 A - 0 K + 3 Cl - 120

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Model cell Intracellular Extracellular + 30 116 90 4 - Na+ 117 A- 0 K+ 3 Cl- 120 + - + + K+, Cl-à permeable Na+, A-à non permeable Nernst equation K+ equilibrium potential: no net K+ movement In reality: limited Na+ permeability

  2. Li+ can replace Na+ from the cytoplasmic side but with lower efficiency [Na+]o140 mM 3 : 2 electrogenic Na,K-ATPase [Na+]i 10 mM [K+]i 140 mM [K+]o 5 mM ATP ADP - 90 mV ATP [Ca2+]i ADP K+ 100 nM Ca2+-ATPase [Ca2+]i 2 mM

  3. Nernst equation Goldman – Hodgkin – Katz equation

  4. Extracellular side Cytoplasmic side • E1 conformation • High affinity for Na and ATP • E2 conformation • low affinity for ATP

  5. b-alegység -55k Da - 4 isoform - necessery for activation - S–S links -glycosylated 100 kDa 4 izoforma Ionophor domain: 3,4,5,(8?) transmembrane segment 369 - aspartate

  6. P-type ATP-ases Na, K-ATPase α1 α2 α3 α4 K, H-ATPase (K+-absorption; H+- excretion) stomach parietal cells

  7. P-type ATP-ases SERCA ATPase SERCA 1 striatal muscle SERCA 2 smooth muscle, striatal muscle, heart muscle - phospholambane SERCA 3 platelets, endothelialcells Plazma membrane Ca2+- ATPase PMCA 1 general PMCA 2neuronal - higher affinity for cAMP phosphorylation than PMCA 4 PMCA 3 striatal muscle, brain PMCA 4 general PMCA 5 ATP dependent aminophospholipid translocase phosphatidyl serine, phosphatidyl etanolamine asymmetric membrane distribution

  8. Extracellular. Na+ Citoplasmic ATP K+ ATP

  9. a2b2 tetramer (270 kD) • Optimalphospholipid environment • fluidity

  10. Ouabain Na+ Ca2+ Ca2+ ATP-ase isoforms: at least 5 different genesàa -different sensitivity to ouabain in different tissues

  11. αsubunit isoforms α1 - most cells, in epithelialcells only this one α2 - striatal muscle, brain, heart α3 - neurons, heart α4 - testis Sensitivity to ouabain: Kdα2 >α3 >α1 0.1 pM 30 nM 0.1 mM

  12. Piros gyűszűvirág(Digitalis purpurea)

  13. ~ 30% of the total ATP production In neurons ~ 50 % (Na, K-ATPase: voltage-dependent Na+ channels = 10 :1) At normal [Na+]iand [K+]o àactivity is 10-15% of the maximalàlarge reverse capacity In neurons the activity is increased by 2.5 – 25 folds during action potentials K0.5for ATP is 300 - 800 µM Anoxia!

  14. α subunit isoformes α1 - in most cells, in epithelial cells exclusively α2 - striated muscle, brain, heart α3 - neurons, heart α4 - testis Different sensitivity to cardiac glycosides: Kdα2 >α3 >α1 0.1 pM 30 nM 0.1 mM

  15. Effects of digitalis-like compounds (DLC)

  16. Regulation γ – subunit (1978) szövet-specifikus Na, K-ATPáz regulátor (vese, pancreas, fötális máj) 7.2 KDa (58 aminosav) - egy transzmembrán domain Nem integráns része az enzimnek Növeli az enzim ATP iránti affinitását Szerepe van a K+ általi aktiválásban Jelentősége:anoxiában Fiziológiásan a vese velőállomány közel anoxiás körülmények között működik Reabszorpciók a Na-pumpa kontrollja alatt állnak Kis mértékű ATP affinitás növekedés → pumpa aktivitás ↑ (Fine tuning! Nagy mértékű affinitas növekedés további ATP ↓ okozna!)

  17. To the proper function of the pump: Na+i and K+o is required [K+]osaturates the binding place [Na+]i< than required to 50 % saturation The pump responds to changes in [Na+]i

  18. ESSENTIAL HYPERTENSION(SODIUM - VOLUME dependent – low renin level) Kidney Na+ excretion ↓ ↓ [Na+] plasma ↑ ↓ Circulating blood volume ↑ ? ↓ ? Ouabain release – adrenal cortex ↓ Vascular tone ↑ [Na+]i↑→ Na - Ca exchange →[Ca2+]i ↑ Long treatment with cardiac glycosides→ → hipertension

  19. Regulation HORMONES Corticosteroids (aldosterone, dexamethazon) aldosterone: long term adaptation to decreased Na+ intake kidney long term effect – increased expression of mRNA of Na,K-ATPase short term effect – increased activity of enzymee (decrease of KM to Na+?) long term upregulation – described for α1, α2, α3 (smooth muscle, brain, heart) ENDOGENOUS STROFANTIN

  20. Na,K-ATPase in specialized cells Kidney:Na reabsorbtion Na/Ca exchange digitalis After stimulation of stretch aktivated channels removal of Na neuron glia

  21. ADRENALIN Tissuespecific effect Activation of Na,K-ATPase in striated muscles decreases hyperkalemic detected after muscle work

  22. Secondary active transports Na cotransporters • *Glucose absorbtion • *Amino acid absorbtion • *Ca2+ (Na+-Ca2+exchanege) • *Cholinuptake into the cholinergic nerve terminal • *Adrenalin, noradrenalin. dopamin, serotonin uptake into the axon terminal • *Na+-H+ exchange • Inhibition by spec inhibitors + ouabain

  23. Na-H exchanger (NHE) -77 mV pHi 7,08 83 nM pHo7,38 44 nM [H+]i = 730 nM pH = 6.13 H+ Na+ 1:1 non electrogenic

  24. 5 izoforma 12 transzmembrán régió NHE 1 általános (basolateralis membrán) regulált, neurotranszmitterek hormonok növekedési faktorok sejt térfogat csökkenés H+ affinitás ↑→ citoplazma alkalinizálás NHE 3 epitel sejtek apikalis membránjában NHE 5 agy, lép, testis

  25. KidneyNa+ reabszorpció • Proximal tubules • (Na+-H+ exchanege) • Collecting tubules • (Na+ channel) Ca = szensav anhidraz

  26. Neurotransmitter ~ pH = 6 ATP H+ ADP H+ Citoplazma

More Related