1 / 27

High Energy Neutrino Astronomy and GRBs

High Energy Neutrino Astronomy and GRBs. 黎 卓 北京大学物理学院天文系 Collaborators: Eli Waxman, 戴子高, 陆埮 & 宋黎明. Cosmic ray spectrum. E -2.7. ~1/( km 2 s). E -3. R(>10 20 eV) ~1/(100km 2 yr). Nagano & Watson 2000. Ultra-High Energy Cosmic Ray: extragalactic. Light nuclei (p?) Isotropic.

archie
Télécharger la présentation

High Energy Neutrino Astronomy and GRBs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Energy Neutrino Astronomy and GRBs 黎 卓 北京大学物理学院天文系 Collaborators:Eli Waxman, 戴子高, 陆埮 & 宋黎明

  2. Cosmic ray spectrum E-2.7 ~1/(km2s) E-3 R(>1020eV) ~1/(100km2yr) Nagano & Watson 2000

  3. Ultra-High Energy Cosmic Ray: extragalactic Light nuclei (p?) Isotropic Heavy nuclei Galactic plane enhancement X-Galactic HiRes Protons

  4. UHECR source: propagation • “GZK sphere” for X-galactic protons • Pion production threshold: E>5*1019eV • E>5*1019eV sources: <100Mpc • Associated with LLS? Anisotropic? ~100 Mpc

  5. UHECR source: acceleration

  6. Augerhot results: astrophysical accelerators (AGN?) 27, >60EeV Auger collaboration 2007

  7. HE Neutrinos from CR accelerators • -production in accelerators: • acc. p’s; acc. e’s : synchrotron/IC photons • If all p energy converted to  (in the source) • Waxman-Bahcall Bound for sources optically thin to p: Waxman & Bahcall 1999

  8. WB bound

  9. GRB shock model • Internal shocks: fast shells catch up slower shells (unsteady flow) • External shock: flow slows down as plows into external medium ~1016cm ~1013 cm X O Meszaros (2003)

  10. Non-thermal (broken PL) spectra • Most energy around Epeak ~1MeV • Extend to >10 GeV in some bursts GRB spectra photon electron/proton p=2: Shock acceleration? E-2 E-2 10GeV

  11. HE n’s: pg interaction p+→ m+ + nm (~10-8s) m+→ e+ + ne+ nm(~10-6s) _ e=0.05ep eg ep=0.2GeV2G2 • D-resonance: • eg~1 MeV (burst) en~1014.5eV. • eg~10 eV (afterglow) en~1018eV.

  12. Prompt neutrino • The fraction of total energy loss • td~R/(c), fπ=td x tπ-1 • For >10PeV protons, • Suppression by pion/muon EM energy loss • life, tcool1/ • p fractional energy-loss rate: en2n(en) f=0.2 [Waxman & Bahcall 1997] ~1PeV 100TeV Neutrino energy [Kashiti & Waxman 2005; Rachen & Meszaros 1998]

  13. xe=0.1 xB=0.01 E0=1053erg n=1/cm3 Afterglow shock model Radius Bulk LF Magnetic field Le -1/2 em ec -1 Afterglow spec. e

  14. Afterglow neutrinos • Given protons,~1e+19eV, produced in afterglow shock, the energy loss, ~0.1, is also significant. en2n(en) pspectrum Np +1/2 n spec. -2 +1 ~1EeV ep en Li, Dai & Lu (2002)

  15. A note on afterglow shock • Fermi shock acceleration require strong magnetic field • Downstream: equipartition field derived from afterglow modeling • Upstream: X-ray afterglow spectra imply upstream field amplification to ~mG G tres<tIC g e ~1/G downstream upstream: B, n shock front Li & Waxman (2006)

  16. +-induced GRBneutrinos Suppressed by p and/or m EM cooling en2n WB bound: f=1 Efficient acceleration? f=0.2 f=0.07 Prompt ~10sec Afterglow ~day 100TeV 1PeV 1EeV? en

  17. EeV neutrinos: 0-induced en2n WB bound: f=1 f=0.2 No suppression; originated from p0; 3% WB bound Prompt ~10sec 100TeV 1PeV 1EeV en

  18. HE ’s from neutral 0 production p0 • Processes g CMB EM cooling suppression m n no cooling suppression [Li & Waxman 2007b]

  19. q n lm g CMB peak n+2 • Q1: suppressed by e+- production? • Q2: deflected by IGM field (and hence delayed)? cross section -1, similar above  threshold e+- thr. +-thr. =1019-20eV, /e=(3-10)% [Li & Waxman 2007b]

  20. Q3: HE ’s escape from source? • e+- production optical depth in source • low energy break • K-N suppression of cross section • Strong synchrotron absorption below keV • Conclusion: >10PeV photons escape from GRB source dn/de [Li & Waxman 2007b] ~1MeV ~1keV e [Li & Waxman 2007a] [Li & Song 2004]

  21. Featured EeV neutrinos en2n WB bound 1 0.2 20/km2yr 1km2 experiment 0.03 [Li & Waxman 2007b] 100TeV 1PeV 1EeV en

  22. Identify UHECR sources (time/direction) Constrain source & acceleration physics e.g. resolve jet composition (lepton, or baryon) Constrain Violation of Lorentz-invariant n-g timing n-physics Oscillation;  appearance Interaction cross section Neutrino astronomy

  23. South Pole • Optical Cerenkov • 0.1 km2: Amanda • 1 km2: IceCube • 1-1000TeV

  24. Amanda/IceCube 80strings (60PM each) in 2011

  25. Mediterranean Sea • Optical Cerenkov • 0.1 km2: • Antares • Nestro • NEMO • 1 km2: KM3NeT

  26. Coherence radio Cerenkov: • ANITA (balloon) • ARIANNA (array) • >>1km2 • >0.1EeV [Barwick 2007]

  27. New Amanda result Berghaus for IceCube Collaboration 2007 2000-2003 data

More Related