1 / 44

生物技术 的 四大支柱

生物技术 的 四大支柱. 发酵工程. What are Microorganisms?. Virus ( 病毒) Non-cell microbes Bacteria ( 细菌) Archaea ( 远古细菌) Algae ( 藻类) Fungi ( 真菌:酵母、霉菌) Protozoa ( 原生动物). Prokaryotes ( 原核生物 ). Eukaryotes ( 真核生物). Microorganisms are free-living cells. Plants and Animals are

Télécharger la présentation

生物技术 的 四大支柱

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.


Presentation Transcript

  1. 生物技术的四大支柱

  2. 发酵工程

  3. What are Microorganisms? • Virus (病毒) Non-cell microbes • Bacteria (细菌) • Archaea (远古细菌) • Algae (藻类) • Fungi (真菌:酵母、霉菌) • Protozoa (原生动物) Prokaryotes (原核生物) Eukaryotes (真核生物)

  4. Microorganisms are free-living cells Plants and Animals are composed of many cells, these are multicellular. Microorganisms are free- living cells.

  5. What are Prokaryotes? Prokaryotes: • Bacteria(细菌) • Archaea(远古细菌) • Actinomycetes(放线菌) • Mycoplasma(支原体) • Rickettsia(立克氏体) • Chlamydia(衣原体) • Cyanobacteria(篮细菌)

  6. What are Eukaryotic Microorganisms? • Algae • Fungi • Slime molds • Protozoa

  7. Prokaryotic and eukatyptic cells

  8. Virus: Virus, Viroids and Prions

  9. Is Microbiology Useful? Yes! • As a basic biological science, the most accessible research tools for probing the nature of life processes • As an applied biological science, many large scale industrial processes are microbially based: BIOTECHNOLOGY

  10. Products from Microorganisms

  11. Genetically Engineered Microorganisms • Many high-value-added peptide drugs are produced by genetically engineered micro-organisms: Blood proteins (Erythropoietin, Factors VII, VIII, IX) Human hormones (Epidermal growth factor, Human growth hormone, Insulin, Nerve growth factor) Immune modulators (a-Interferon, b-Interferon) Vaccines (Hepatitis B, Measles, Rabies)

  12. Five Common Characteristics of Microorganisms 1. Small volume, large surface area 2. Fast absorption and conversion 3. Rapid duplication and growth 4. Strong adaptability 5. Widespread distribution and diversified species

  13. Five Common Characteristics of Microorganisms 1. Small volume, large surface area. Figure on the left: The size of a virus in comparison to a bacterial and animal cell.

  14. Five Common Characteristics of Microorganisms 2. Fast absorption and conversion For example: 5 g/l of bacteria (cell dry weight) Azotobacter vinelandii UWD can consumed 10 g/l of glucose to double its weight to 10 g/l within less than 5 h. How about you?

  15. Five Common Characteristics of Microorganisms 3. Rapid duplication and growth An Echerische coli(大肠杆菌)cell can double itself within 15 minutes, it also means its weight increases one fold within 15 minutes. ? How fast can you grow?

  16. Five Common Characteristics of Microorganisms 4. Strong adaptability (Adapt to extrem environment, such as high salt concentration, high temperature, antibiotic resistant)

  17. Five Common Characteristics of Microorganisms 5. Widespread distribution and diversified species

  18. Important Persons in Microbiology History 1684 Antonie van Leeuwenhoek (discovery of bacteria) 1857-1864 Louis Pasteur (lactic acid fermentation, yeast alcohol fermentation, spontaneous generation theory) 1881-1884 Robert Koch (pure culture, cause of tuberculosis, Koch’s postulates, cause of (霍乱) cholera) 1889 Martinus Beijerinck (concept of a virus) 1929 Alexander Fleming (discovery of penicilin) 1953 James Watson, Francis Crick (DNA structure) 1983 Luc Montagnier (discovery of HIV)

  19. Microorganisms as cells All cells contain: proteins, nucleic acids, lipids and polysaccharides (for our lab: polyhydroxyalkanoates or PHA) The hallmarks of a cell: 1. Self-feeding or nutrition 2. Self-replication or growth 3. Differentiation 4. Chemical signaling 5. Evolution All cells contain six major elements:: C, N, P, S, O, H

  20. How are microorganisms cultivated? • Petri Disks • Shake Flasks • Fermentor

  21. Laboratory Culture of Microorganisms 1.5% Agar • C:Organic-Defined media: glucose, sucrose, acetate, pyruvate, malate, fatty acids, alkanes et al. Complex media: yeast extract, beef extract, peptone, many other complex digests. Inorganic-CO2, HCO3- • N: Organic-Amino acids, nitrogenous bases; Inorganic-NH4Cl, (NH4)2SO4, KNO3, N2. • P: KH2PO4, Na2HPO4. • S: NaSO4, H2S. • K: KCl, K2HPO4 • Mg: MgCl2, MgSO4

  22. Petri Disk Cultivation of a Pure Strain

  23. The impact of microorganisms on human affairs

  24. Pilot Biostat UD50

  25. 发酵工程 • 发酵工程是指利用微生物的特定性状,通过现代工程技术,在生物的反应器中生产有用物质的一种技术系统。当前的医用和农用抗生素绝大部分是发酵的产品,此外发酵工程产品还包括氨基酸、工业用酶等,人们日常生活中广泛使用的味精、维生素B2等也是发酵工程的产品。

  26. 发酵工程的定义 • 发酵工程(微生物工程,发酵技术),是指利用微生物的特定性状,通过现代工程技术,在生物的反应器中生产有用物质的一种技术系统。 • 发酵工程是“研究利用微生物的工业,即微生物参与的工艺过程”。

  27. 发酵工程的历史发展 • 19世纪末:厌氧发酵(酒精、乳酸、发酵食品) • 1945年:通气搅拌发酵罐--好氧发酵(青霉素等抗生素) • 20世纪50年代:代谢控制发酵(氨基酸、核酸等) • 20世纪70年代:固定化酶连续发酵 • 20世纪80年代:现代发酵工程技术(与基因操作技术相结合) • 20世纪末:人类基因组计划

  28. 发酵工程在现代生物技术中的 地位和作用 发酵工程是生物技术产业化的基础和关键技术, 是生物技术四大支柱的核心,无论传统发酵产品,如抗生素、氨基酸等,还是现代基因工程产品,如疫苗、人体蛋白质等,都需要发酵技术进行生产。

  29. 发酵工程关键技术 • 生物反应器: 机械搅拌式 气升式 • 过程参数检测(实时在线与离线):pH,溶氧,温度,搅拌 菌体, 产物,底物,RQ等 • 发酵过程控制:pH,溶氧,温度,底物流加等

  30. 发酵设备及检测控制系统 B|Braun公司 • 发酵罐:Biostat系列 • 参数检测 • 多级控制: 人工DCU MFCS

  31. Biostat B2 Biostat ED10

  32. Pilot Biostat UD50

  33. DCU

  34. MFCS

  35. Fermentor Display

  36. History Plot

  37. 国内、外发酵设备公司 • 德国贝朗 占中国80%以上的市场 • 瑞士比欧 • 美国NBS • 韩国 • 日本 • 华东理工大学 • 江苏理工大学

  38. 现代发酵工程规模 • 低值工业品大型化以规模来取胜(几十数百吨)。如味精、氨基酸、有机酸、抗生素、饲料、食品工业用产品等; • 高价值转基因产品小型化(几十数百升)。基因工程大肠杆菌、酵母菌高密度培养;动物细胞植物细胞培养; • 研究中心智能化、全能性。

  39. 现代发酵工程对工艺控制的需要 • 规模生产GMP规范对过程文档化的要求 必要的检测手段 准确的执行成熟的工艺控制策略 • 实验室研究 完善的检测手段 全能性的过程控制软件

  40. 发酵过程工艺的后续改进研究 青霉素(几百倍的提高) • 菌种改造要求新工艺 • 市场竞争要求成本降低新的工艺控制策略 以高密度培养为例

  41. 应用实例 GLN发酵工艺优化 • GLN简介 • 菌种改良 • 工艺改造: 摇瓶Biostat B2 Biostat ED10 Biostat UD50 5 t 罐中试发酵

  42. Gln简介 • 目前国内生产谷氨酰胺的专业厂家只有3--4家,其生产能力低,而且采用的是化学合成法,其成本高,质量难以控制,不能满足市场需求。 •     谷氨酰胺是一种功能性食品添加剂,可广泛用于保健食品、运动饮料、医药等领域,在防治消化器官溃疡和酒精中毒、改善眼功能,保护肝脏、提高免疫力等方面有显著功效。发酵法生产谷氨酰胺的开发成功,将对其在食品中的应用及保健品开发起到促进作用。

  43. GLN发酵典型工艺曲线

  44. 谢谢

More Related