1 / 25

Amand Faessler , Erice September 2014 With thanks to : Rastislav Hodak ,

Can we look back to the Origin of our Universe ? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler , Erice September 2014 With thanks to : Rastislav Hodak , Sergey Kovalenko , Fedor Simkovic ;. Publication : arXiv : 1304.5632 [ nucl-th ];

artan
Télécharger la présentation

Amand Faessler , Erice September 2014 With thanks to : Rastislav Hodak ,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Can welook back totheOrigin ofourUniverse? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 Withthanksto: RastislavHodak, Sergey Kovalenko, Fedor Simkovic; Publication: arXiv: 1304.5632 [nucl-th]; arXiv: 1407.6504 [nucl-th] July 2014 and acceptedby EPJ Web ofConferences vol. 71; tobepublished J. Phys. G 2014.

  2. CosmicMicrowave Background Radiation Cosmic Neutrino Background CosmicGravitational Wave Background 1) Decouplingofthephotonsfrom matter about 380 000 years after the Big Bang, whentheelectronsarecapturedbytheprotons and He4 nucleiat a Temp. ofabout 3000 Kelvin. The universe was then neutral. Photons movefreely.

  3. Planck SatelliteTemperatureFluctuationsComic Microwave Background (Release March 21. 2013)

  4. On 18. March 2014 theBICEP2 Collaborationpublished in thearXiv: 1403.3985v2 [astro-ph.CO] Fingerprint oftheGravitationalWavesoftheInflationary Expansion ofthe Big Bang in theCosmic Background Radiation. GravitationalWavesareQuadrupole OscillationsofSpace not in Space.

  5. BICEP2 Detector at the South-Pole

  6. 1.5 to 4 degrees;

  7. 2) Estimateof Neutrino Decoupling Universe Expansion rate: H=(da/dt)/a • ~ n Interaction rate: G= ne-e+<svrelative> • H = = O( T2) [1/time] • ~ (1/a3) <GF2p2 c=1> ~ T3 <GF2T2c=1> ~ GF2T5[1/time] • with: Temperature= T ~ 1/a = 1/(lengthscale); = h/(2p) = c = 1 Stefan-Boltzmann

  8. HowcanonedetecttheCosmic Neutrino Background? Electron-Neutrino capture on Tritium.

  9. 3. Search forCosmic Neutrino Background CnBby Beta decay: Tritium Kurie-Plot of Beta andinduced Beta Decay: n(CB)+ 3H(1/2+)  3He (1/2+) + e- Infinite goodresolution Q = 18.562 keV Resolution Mainz: 4 eV  mn < 2.3 eV Emittedelectron Resolution KATRIN: 0.93 eV  mn < 0.2 eV 90% C. L. ElectronEnergy Fit parameters: mn2andQ valuemeV Additional fit: onlyintensityofCnB 2xNeutrino Masses

  10. Tritium Beta Decay: 3H 3He+e-+nce

  11. Neutrino Capture: n(relic) + 3H 3He + e- 20 mg(eff) of Tritium  2x1018 T2-Molecules: Nncapture(KATRIN) = 1.7x10-6nen/<nen> [year-1] Every 590 000 years a count! for <nen> = 56 cm-3

  12. Problem: 56 e-Neutrinos cm-3toosmall • Gravitational Clustering of Neutrinos estimatedby Y. Wong, P. Vogel et al.: nne(Galaxy) = 106*<nne> = 56 000 000 cm-3 1.7 counts per year Increasethsourcestrength: 20 micrograms 2 milligrams 170 counts per year everysecondday a count Speakersof KATRIN: Guido Drexlin and Christian Weinheimer

  13. 20 microgram 2 milligram Tritium • Such an IncreaseoftheTritium Source Intensityiswith a KATRIN Type Spectrometerisdifficult, if not impossible!

  14. ThreeimportantRequirements: • The Tritium DecayElectronsare not allowedtoscatterwiththe Tritium Gas. 2) The MagneticFlux must beconserved in the wholeDetection System. 3) The Energyresolution must beofthe order of 1 eV.

  15. The decayelectronsshould not scatterbythe Tritium gas. Only 36% have not scattered Source Beam Magnetic Field 3.6 Tesla Optimal Densityslightlybelowr*dfree/2 Tritium Gas Troitsk: 30%; Mainz: 40%; KATRIN: 90%

  16. 2) ConservationofMagneticFlux Ifonecantincreasetheintensity per area, increasethe areabyfactor 100 from 53 cm2to 5000 cm2. MagneticFlux: (Ai=5000 cm2) x (Bi=3.6 Tesla) = 18 000 Tesla cm2 = Af x (3 Gauss); Af= 6 000 m2 diameter = 97 meters

  17. 3) EnergyresolutionofDE~ 1 eV Energyresolution:Ef(perpend.) = Efp= DE

  18. Angular MomentumoftheSpiralingElectrons must beconserved Energyresolution:Ef(perpend.) = Efp= DE = 1 eV L = |rm = const = L ~ []i =[  Bf = 3 Gauss

  19. 20 microgram 2 milligram Tritium • Such an IncreaseoftheTritium Source Intensitywith a KATRIN Type Spectrometerisdifficult, if not impossible.

  20. Summary 1 • The CosmicMicrowave Background allowstostudytheUniverse 380 000 years after the BB. • The Cosmic Neutrino Background 1 sec after the Big Bang (BB). • The Cosmic Background ofGravitationalWaves 10-31 Seconds in the Big Bang

  21. Summary 2: CosmicNeutrino Background Average Density: nne= 56 [ Electron-Neutrinos/cm-3] Katrin: 1 Count in 590 000 Years Gravitational Clustering of Neutrinosnn/<nn> < 106 and 20 micrograms Tritium  1.7 counts per year. (2 milligram3H 170 counts per year. Impossible ?) THE END 2. Measureonly an upperlimitofnn Kurie-Plot Emittedelectron ElectronEnergy 2xNeutrino Masses

  22. Cyclotron Radiation Detectionof Tritium DecayElectrons. Phys. Rev. D80 (2009) 051301

More Related