1 / 39

Aktuell forskning v/Ifi ; Teknisk programvare

Aktuell forskning v/Ifi ; Teknisk programvare. Numerisk simulering - hva er det? Programvare for simulering; utfordringer Teknisk programvare v/Ifi Hva slags jobb kan man få? Studieveier. Hva er simulering?. Fysiske prosesser i naturen eller tekniske innretninger

ashanti
Télécharger la présentation

Aktuell forskning v/Ifi ; Teknisk programvare

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Aktuell forskning v/Ifi;Teknisk programvare • Numerisk simulering - hva er det? • Programvare for simulering; utfordringer • Teknisk programvare v/Ifi • Hva slags jobb kan man få? • Studieveier

  2. Hva er simulering? • Fysiske prosesser i naturen eller tekniske innretninger • Matematiske modeller (særlig partielle differensiallikninger) • Numeriske metoder, programmering • Datamaskin-eksperimenter • Visualisering og data-analyse

  3. DATASET UNSTRUCTURED_GRID POINTS 201 float 2.77828 2.18262 -0.25 0.476 2.4 -0.85 0.85 2.4 -0.476 -0.476 2.4 -0.85 -0.85 2.4 -0.476 -0.85 2.4 0.476 -0.476 2.4 0.85 0.476 2.4 0.85 0.85 2.4 0.476 2.55 0.8625 0.66 CELLS 458 2290 4 41 29 65 80 4 53 41 65 82 4 35 34 47 71 Prediction & Control Results Refinement Processes Computations Mathematical Model The Simulation Pipeline

  4. Hvorfor simulere? • Lavere kostnader enn fysiske eksperimenter i felten • Fysiske eksperimenter kan være farlige, dyre eller umulige • Gir bedre innsikt og forståelse • Gir bedre muligheter for prediksjon, kontroll og optimal design

  5. Store teknologiske utfordringer • “Grand Challenges” • strømningsberegninger (vær, fly, bil, ...) • simulering av miljøet (jord, hav, atmosfære) • økosystem simulering • biomekanikk & medisin • molekylærbiologi • molekyl-design og -konstruksjon • Simulering er et helt sentralt verktøy!

  6. New Understanding of Life Processes Simulation is important in the exploration of life processes, ranging from studies of DNA to investigations of blood circulation and inner organs like the heart, brain and lungs.

  7. DNA and Drug Design Better insight in the structure of DNA leads to better understanding and control of life processes. For instance, this can lead to new and improved drugs, like a vaccine for the flu!

  8. Millions of people suffer from atherosclerosis. Fatty blockages of the arteries gradually obstruct blood flow and ultimately causes the heart to stop beating. This remains one of the leading causes of heart attacks around the world. Heartbeats and Flowing Blood Simulation of blood and other complex fluid flows may lead to changes in accepted surgical practices that will dramatically extend the life expectancy of those suffering from arterial diseases like atherosclerosis. Attempts are made to develop arterial grafting techniques that will reduce atherosclerosis build up. Various graft designs can be tested through accurate simulations of the blood flow.

  9. ElectricalActivity in Heart Simulation of the electrical activity in the human heart based on a model coupling several PDEs and ODEs. The visualised electrical potential represents a period of 250 ms. This problem is extremely demanding in terms of computational resources and requires advanced solution methods and fast hardware.

  10. Results from 3-D lung airflow modeling, depicting flow velocity at selected cross-sections in a single bifurcation. Computational fluid dynamics (CFD) techniques used in the design of cars, airplanes and aerospace vehicles have been converted to use in the complex branching geometry of the lung's small airways. Have You Quit Smoking?

  11. Earth & Environment To better understand the evolution of the Earth and the processes making up our environment, simulation is an indispensable tool.

  12. What’s the Weather Like Today?

  13. The sea level is roughly four inches higher than it was 100 years ago, and it goes up one to three millimeters a year. Do the rising levels reflect climate change associated with alarms about global warming, as many scientists believe? Or, as others argue, are they part of normal fluctuations in weather cycles that will even out over time? Either way, should we be worried? What are the potential effects for coastal population centers? The need for answers runs smack up against the vast uncertainties inherent in a system as complex as Earth's climate. The best tool - the only tool - we have for assimilating the multitude of variables and trying to make rational predictions is computer modeling, and it's not yet good enough. Warm Winters and Cold Summers Each frame in this animation of the surface temperature of the Gulf Stream represents a seven day period.

  14. Travels With Buzz Lightyear:- To Infinity and Beyond The understanding of the Universe, let alone man’s journey into Space would have been impossible without simulations.

  15. Color indicates density, with initial density of the comet core (red) corresponding to solid ice. Pressure rapidly builds in front of the comet from the aerodynamic force of impact with the atmosphere, flattening the sphere and ripping it apart within seconds. The animation shows a five-second time period, one frame every 0.025 seconds. Evolution and Structure of the Universe This is a simulation of a comet fragment one kilometer in diameter plunging into Jupiter's atmosphere at 134,000 miles per hour.

  16. Professor Richard Feynman of CalTech, Nobel prize winner and world-known eccentric, joined reluctantly the Rogers Commision investigating the Challenger accident. During his personal search for the cause, he learned that NASA officials estimated the chance of failure of the shuttle to be about 1 in 100,000. Feynman found that this number was actually closer to 1 in 100. He proved by experiment that rubber components used to seal the solid rocket booster joints failed to expand when the temperature was at or below 0 degrees C. This caused a leakage that heated the fuel tank and caused the explosion. See http://feynman.com/online/challenger.htm Star Trek, Space Shuttles and Global Communications January 28, 1986: Flight 51-L, the Challenger space shuttle exploded. The 7 crew members died.

  17. Manufacturing Processes Today, almost any industrial branch use simulation as a tool for evaluating, predicting and optimising the manufacturing processes. This is mainly due to better cost effectiveness and reduced risks.

  18. Mongstad Refinery Six rock cavern stores, total capacity of 9.4 million barrels Handles crude oil carriers up to 380,000 deadweight tons It serves as the terminal for: Troll Oil Pipeline I, 250,000 barrels per day Troll Oil Pipeline II (Q3 1999), 150,000 barrels per day Heidrun transshipment, about 240,000 barrels per day Key to Norwegian Wealth: Oil & Gas

  19. Aerospace and Automotive Industries Saab crash simulations

  20. The Alpha microprocessor, the core silicon "chip" used in the CRAY T3D, can do 150 million calculations a second. Silicon- What Makes the Information Society Tick... Silicon makes up 27 percent of the Earth’s crust, and provides the raw material for nearly all elelctronic chips, from VCRs to the Space Shuttle. The never-ending struggle for faster circuitry, smaller, more perfect chips, relies heavily on simulation of the physical processes involved in the manufacturing of microelectronic chips.

  21. The Third Paradigm of Science “Simulation has become recognized as the third paradigm of science, the first two being experimentation and theory.” “High Performance Computing and Communications: Foundation for America's Information Future” (Supplement to the President’s FY 1996 Budget)

  22. Ufordring i simulering: Programvare • Simulering krever maskinvare, metoder og programvare • Siden 1950 har • datamaskinene blitt 1,000,000 ganger raskere. • algoritmene blitt 1,000,000 ganger raskere. • Flaskehalsen pr. i dag er høykvalitets-programvare

  23. Hvorfor er programvareutvikling en flaskehals? • Programvareutvikling er ofte den mest ressurskrevende delen av simuleringsprosjekter • Store, kompliserte programsystemer • Ekstreme krav til effektivitet • Stor algoritmisk kompleksitet • Metoder for numerisk programvareutvikling er (tradisjonelt) primitive

  24. Teknisk programvare v/Ifi • Aktivitet: utvikling av moderne metoder og programvare for simulering • Spesielt forskningsfokus mot • objekt-orientert numerisk programvare (i C++) • metoder for parallelle beregninger • medisinske anvendelser

  25. Computing in Parallel Computing in Parallel Computing in Parallel Computing in Parallel • Forskere og ingeniører vil alltid fylle de raskeste og største datamaskinene med: • mer kompliserte matematiske modeller • finere oppløsning (grid) for bedre nøyaktighet • Split et problem i delproblemer og løs hvert delproblem i parallell (krever parallelle datamaskiner)

  26. Ingredienser i et typisk prosjekt

  27. Studieveier • TPV studieretning: informatikk hovedfag • programmering og/eller matematikk/fysikk • Profesjonsstudiet i informatikk • egen studieretning med krav til programmering og/eller matematikk/fysikk • Nytt studium: Simulering og anvendt matematikk (SAM) • matematikk, statistikk, programmering, fysikk

  28. Jobbmarkedet • Stort og økende underskudd på kandidater som forstår matematikken, fysikken og programvare for simulering • konsulentfirmaer innen ulike ingeniørdisipliner (bygg, maskin, marin teknologi) • forskningsinstitutter (SINTEF, IFE, …) • industri (Veritas, Kværner, Aker, ABB, …) • undervisnings-sektoren

  29. Hva slags kurs skal jeg velge? • Svingninger i jobbmarkedet er som regel raskere enn utdanningens lengde… • Ikke velg det “alle andre” velger! • Velg noe som er krevende og lær det godt • gir mer unik/etterspurt kompetanseprofil • TPVs profil: markedsrettet kombinasjon av tradisjonelt krevende (matematiske) emner og mer “mainstream” IT

  30. Kjerneteknologier • Objekt-orientert programmering • C++, Fortran, Java • Scripting og GUI-bygging: Perl, Python • Element- og differansemetoder • Matematiske modeller for strømning, varmetransport og materialdeformasjon

  31. Computational Steering • Mål: klinisk operativ programvare basert på ultralydundersøkelser • Modell: lydbølger gjennom kroppen • Eget C++ program for å simulere lydbølgenes forplantning • Visualisering og data/bilde-analyse via kommersielle programsystemer • Python script for å starte/stoppe simulering, endre kroppsdata, visualisere osv.

  32. Computational Steering

  33. Computational Steering • Relationship between electrocardiogram and different anomalies • More accurate diagnosis • Coupled system of ordinary and partial different eqs. • High resolution >108 points

  34. Structural mechanics Porous media flow Water waves Aero- dynamics Stochastic PDEs Incompressible flow Heat transfer Other PDE applications The Diffpack Philosophy I/O FDM Grid FEM Field Matrix Vector Ax=b

  35. Oil & Gas Mechanical Engineering Aerospace Games Automobile Shipbuilding Finance Energy Telecom Environment Medicine Diffpack - Selected Markets

  36. Diffpack - Selected Customers Commercial • Intel • Petrobras • Shell • DaimlerChrysler • Caisse Centrale des Banques Popular • Commissariat a l'Energie Atomique • Simrad Optronics • St. Gobain Industrial Ceramics Research Institutions • Istituto Superiore di Sanita • SINTEF Research Foundation, Norway • Lawrence Livermore Nat. Lab • Institut Francais du Petrol • Veritas Value Adding Resellers • Geologica • Kappa Engineering SA • Calcom SA • Cadmit, Inc. Universities • Stanford University • Yamanashi University • Yokohama National University • Warsaw University of Technology • Norrland University Hospital • ETH Zurich • Korea University • Vanderbilt University

  37. Some Projects • Simulation of electrical activity in human heart • Simulation of the flow in the human heart • Numerical methods for option pricing • Software for numerical solution of PDE’s: Diffpack • Scientific computing using a Linux-cluster: Diplopodus • Finite element modelling of ultrasound wave propagation • Multi-physics models by domain decomposition methods • Scripting techniques for scientific computing • Numerical modelling of reactive fluid flow in porous media

  38. Faculty Post Docs Ph.D. Students Part-time Aslak Tveito Glenn Terje Lines Linda Ingebrigtsen Are Magnus Bruaset (NO) Hans Petter Langtangen Aicha Bounaim Ola Skavhaug Øyvind Hjelle(SINTEF) Xing Cai Wen Chen Joakim Sundnes Bjørn Fredrik Nielsen (NR) Åsmund Ødegård Kent Andre Mardal Knut Andreas Lie (SINTEF) Staff

  39. Oppsummering • Simulering: bruke datamaskin-modeller til å studere virkeligheten • Anvendelser i industri, økonomi, medisin… • Simulering = fysikk/matematikk + programmering/IT • Teknisk programvare v/Ifi har fokus på hvordan lage programvare for simulering • Stort kandidatbehov

More Related