1 / 56

Jet-Gas Interactions in Seyfert Galaxies

Jet-Gas Interactions in Seyfert Galaxies. Mark Whittle (Virginia) David Rosario (Virginia) John Silverman (Virginia) Charlie Nelson (Drake) Andrew Wilson (Maryland). Outline. Brief review of : AGN & Jets & Emission lines Reasons to study jet-gas interactions (JGI)

avinoam
Télécharger la présentation

Jet-Gas Interactions in Seyfert Galaxies

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Jet-Gas Interactions in Seyfert Galaxies Mark Whittle (Virginia) David Rosario (Virginia) John Silverman (Virginia) Charlie Nelson (Drake) Andrew Wilson (Maryland)

  2. Outline • Brief review of : AGN & Jets & Emission lines Reasons to study jet-gas interactions (JGI) • Case study of Seyfert Galaxy : Mkn 78 Observations & data overview Heuristic description of JGI Ionization analysis Dynamical analysis

  3. Active Galaxies • All galaxies have nuclear black holes • Those currently accreting are “active” • Accretion energy released in two forms

  4. A : Photons • Thermal & non-thermal processes • Broad SED : Optical / UV / X-ray • Large range in luminosity : LINER  Seyfert  QSO

  5. AGN Spectral Energy Distribution (SED) Radio far-IR optical EUV X-ray

  6. Seyferts (NGC 4151) Low Luminosity Quasars High Luminosity

  7. B : Bipolar Outflows (Jets) • Origin uncertain (MHD driven ?) • Velocity uncertain : • Some relativistic, others not • Content uncertain : (p+e- or e+e- ?) • Relativistic component : e- + B  radio • Other (thermal) components ? • Large luminosity range : • Radio loud (radio galaxies/QSRs) • Radio quiet (Seyferts/QSOs)

  8. Seyfert Galaxy Mkn 573 Flux ~ few mJy Radio Quiet Radio Galaxy 3C 296 Flux ~ few Jy Radio Loud

  9. Emission Lines • From ionized gas : • Te~ 104K, ne~ 102 – 109 cm-3 • Ionization mechanism ? • Photoionization (yes) • Shock related (maybe with jets?) • Profiles reveal (Doppler) velocities • BLR (R ~ 10-2pc, V2~ GMBH/R) • NLR-1 (R ~ 1 kpc, V2~ GMbul/R) • NLR-2 (R ~ 1 kpc, V ~ jet related) • Nested emission line regions • BH << AD << BLR << NLR << Gal • r/c : min hr week 103 yr 104 yr

  10. Why study JGI in Seyferts ? • Jet-gas interactions occur in many contexts • AGN (ISM/IGM) • Stellar jets (DMC/ISM) • Starburst winds (ISM/IGM) • Laboratory for astrophysical hydrodynamics • Seyfert ELRs allow important diagnostics • Gas mass, velocity, KE, momentum, pressure • Complements radio source pressure/energy

  11. Mkn 78 : jet-gas archetype Early ground based data suggest prominent JGI : • Luminous triple radio source • Strong double [OIII] profile • FWHM >> gravitational velocities

  12. Mkn 78

  13.  Need HST resolution Unfortunately, Mkn 78 is quite distant : • cz ~ 11,000 km/s  1 arcsec ~ 700pc • BT ~ 15.2 MB ~ -20.8 • Dull looking early type galaxy

  14. Mkn 78 KPNO 2.1m Red Continuum 30 arcsec

  15. Mkn 78 : HST & VLA Dataset • VLA : 3.6cm 8hr map • HST images : (FOC, PC, STIS, NICMOS) • Continuum : UV/green/near-IR • Emission line : [OIII] 5007 • HST spectra : (STIS, FOS) • 4 slits : good spatial coverage • 4 gratings : low resolution : UV & optical high resolution : [OIII] 5007

  16. Near IR NICMOS F160W arcsec Optical STIS CCD clear Dust lane

  17. [OIII] λ5007 arcsec 3.6cm radio

  18. 4 STIS Slit Positions

  19. STIS low dispersion spectral data

  20. STIS high dispersion [OIII] 5007 data

  21. Mkn 78 Case Study :Jet-gas interactions • Heuristic description • Ionization study • Dynamical study • Jet properties

  22. Overlay : Radio (contours) & [OIII] (image)

  23. STIS high dispersion [OIII] 5007 data

  24. 1. Heuristic Description • Inner W-knot Jet ends & disrupts; some gas disturbance ?  DMC enters & disrupts flow; recent interaction • Eastern fan Jet deflected; split lines; “blow-back” shape ?  Cloud inertia deflects jet (doesn’t destroy it) ?  Radial + lateral motion induced (±300 on 400) ?  Intermediate age : begun to disrupt cloud • Outer W-lobe Components; complex velocity ; no bow shock ?  late stage; dispersing cloud remnants; leaky bubble

  25. 2. Ionization Study Low dispersion spectra  many line fluxes Compare line ratios with : • Ionization models (U, Am/i , Shock) • Velocities (Vbulk & FWHM) • Location (radius) 4. Other things (radio/color/dust)

  26. Ionization mechanisms Three basic contexts explored : • U – sequence : AGN photoionization • Am/i – sequence : AGN photoionization • Shock – sequence : shock ionization Cartoon illustrates these 

  27. 1)U sequence 2) Am/i sequence Neutral Back Optically Thin clouds Ionized front AGN AGN Optically Thick Clouds Only Optically Thick & Thin Clouds UV UV Ferland’s, CLOUDY Binette et al : ‘96 Am/i = Am/Ai ~ 0.1 – 10 U = Ni/Ne ~ 10-2 – 10-3 3)Shock sequence Vsh shock Collisionally ionized & photo-ionized post-shock gas Auto-ionizing Shocks Photo-ionized precursor UV Vsh = 100 – 800 km/s Doptia & Sutherland : ‘95, ‘96, ‘03

  28. Line ratios vs models • General excitation/ionization • Discriminators to separate Sh & U+Am/i • Discriminators to separate U & Am/i • [ [OI] 6300 anomalous line ] • [ Nuclear nitrogen enhancement ]

  29. Excitation : All models OK U ~ 10-2 – 10-3 A ~ 30% – 90% Sh ~ 500 – 300 km/s U Am/i Sh

  30. U Discriminators 1 Trends follow U & A Don’t follow shocks Am/i Sh

  31. Discriminators 2 e.g. [NeV], HeII, & [OIII]4363 U poor, favours Am/i trend fits nicely Note : weak [NeV] in Mkn 78 requires new Am/i U Am/i Sh

  32. Ratios vs models : Summary • Clean results because enough data to show trends • Current shock models are excluded • Photoionization by the AGN dominates • Gas contains both optically thick & thin clouds Now consider ratios vs gas velocity

  33. Excitation vs FWHM Excitation vs V –Vsys Shock Shock Results summary 

  34. Ratios vs velocity : Summary • Essentially no (v. weak) correlations :  ionization conditions independent of velocity 2. Shock model predictions very poor Now consider ratios vs radius

  35. Excitation vs Radius • Radius : • Strong correlation •  photoionization • U drops ~ r –1  density ~ r –1 • [SII] difficult to confirm • Am/i drops with r •  more thin @ small r

  36. Final check : UV Luminosity • Check photoionization : • Can UV luminosity power emission lines ? • But UV is invisible/obscured ?! • Take FIR luminosity = reprocessed UV • LUV~ LFIR~ 4πd2FFIR~ 4πd2 [2.6S60+ S100] • Check : • LUV~ Lem ~ 10 x L5007as observed • U ~ NUV/ne~ 10-2.5as observed

  37. 3. Dynamical Study To go beyond heuristic description : • Need physical properties • Aim to evaluate these throughout regions • First consider ionized gas • Then consider other components

  38. Slit B : kinematic measurements Peak Velocity FWHM -2 -1 0 +1 +2 +3 East Nuc West

  39. Extinction Density Line flux Mass Momentum KE

  40. Simple Properties Three regions : Inner knot / East fan / West lobe Region Age : • Age ~ size/velocity : ~ 0.4 / 4 / 8 Myr Ionized gas : • Mass : ~ 0.4 / 1.0 / 1.1 x 106 Msun • Filling factor : ~ 30 / 1.5 / 0.5 x 10-4 • Covering factor : ~ 0.5 / 0.5 / 0.5 Consider other components 

  41. The Various Components Thermal gas : nth; Pth; Tth Relativistic gas : ffrel; Prel ~ B2/8π Line Emitting gas : ffem; nem; Pem; Vem ISM nism~ 1 Assume/show : Prel~ Pth~ Pem ~ Pism

  42. Pressures : Prel, Pem, Pth, Prad • Log P/k~ 6.5 / 6.0 / 5.5 K cm-3 • Quite high > radio galaxy lobes • All components deep within galaxy ISM • All pressures drop with radius (~ r -1) • As expected for galaxy ISM context • Approximate pressure balance between different components : Prel~ Pem (~ Pth) • Relativistic & radiation pressure too low to accelerate ionized gas (by ~x10) • Need dynamical (ram) pressure of jet

  43. Energy Comparisons Relative energies in different parts : • UV (FIR) ~ 1000 (~1043 erg/s) • Emission lines ~ 1000 • Kinetic ~ 1 • Relativistic ~ 1 • Expansion /lobe ~ 1 • Radio ~ 0.2 Simple inferences 

  44. Conclusions from energy comparisons • Photons dominate by x1000 ; Lem~ LUV  supports photo- over shock ionization  should not derive Ljet from Lem (see later) 2. Expansion / KE / Relativistic all similar  flows can accelerate gas & power radio source

  45. 4. Jet Properties Estimating jet energy and momentum : Use emission line & lobe properties : • Ej~ KEem+αe Elobe~ 2-5 Elobe αe = synchrotron loss; adiabatic loss; ffrel Lj = Ej/Tage~ 2-5 x 1040 erg/s • Gj~αm Gem~ 2-5 Gem αm = covering factor loss ; drag loss Fj = Gj/Tage~ 2-5 x 1033 dyne

  46. JET LUMINOSITY EKE ~ Σ½M V2 Lj Elobe~ PV ~ αeErel Lj~(EKE + αeErel )/tage JET MOMENTUM Gem ~ ΣM V Fj Fj~αmGem / tage αm~ αdrag αlcf ~ 2 – 5 αe~ αsyn αad αff ~ 2 – 10

  47. Jet Properties (model) • Components: • Relativistic & thermal; ratio defined by ffrel • Both move at Vj • Pressure balance : Prel~ Pth • We know Prel from radio physics ~ Bme/8π • Energy : Ej~ KEth + Wth + Wrel • Wrel = (4/3)Prel ; Wth = (5/2) Pth • Momentum : Gj~ Gth + Grel = Gth • Relativistic component has ~zero inertia 2

  48. Jet Properties (derived) Use Lj Gj Pj Aj to derive many properties (>100pc) • Thermal material dominates jet energy and momentum • Relativistic gas has little/no momentum • KEj/Uj~ Fj/Aj/Pj~ 10 / 3 / 2  KE dominates energy • Jet velocity~ 1-few x Vgas • 2Lj/Fj~ Vj~ 300 – 3000 km s-1 • Ram pressure dominates : Pram~ 30 / 7 / 4 x Prel • Can accelerate to Vem over Tage for Ncol~ 1021 cm-2 • Only mild shocks : Pram~ρemVsh2  Vsh ~ 10-50 km s-1 • Not acceleration by impulsive shocks; maybe wind/ablation

  49. Jet Properties (derived) • Jet density (thermal) : 0.1 - 5 cm-3 • Consistent with entrained ISM • Jet temperature : Tj~ Pj/njk ~ 106 K • ~0.1-0.7 Temperature from thermalized Vj • again consistent with entrained ISM • Jet Mach number : 5 / 2.5 / 2  transonic • Consistent with entrainment and decollimation • Jet mass flux: ~ Mem over region lifetime • Could be entrained ISM • Could become ‘thermal’ component of lobe

More Related