330 likes | 706 Vues
2/34. Structure. Regression analysis: definition and examples Classical Linear RegressionLASSO and Ridge Regression (linear and nonlinear)Nonparametric (local) regression estimation: kNN for regression, Decision trees, SmoothersSupport Vector Regression (linear and nonlinear) Variable/featu
                
                E N D
1. Regression Analysis 
2. 2/34 Structure Regression analysis: definition and examples
Classical Linear Regression
LASSO and Ridge  Regression (linear and nonlinear)
Nonparametric (local) regression estimation:kNN for regression, Decision trees, Smoothers
Support Vector Regression (linear and nonlinear)
Variable/feature selection (AIC, BIC, R^2-adjusted) 
3. 3/34 Feature Selection, Dimensionality Reduction, and Clustering in the KDD Process 
4. 4/34 Common Data Mining tasks 
k-th Nearest Neighbour
Parzen Window
Unfolding, Conjoint Analysis, Cat-PCA 
5. 5/34 Linear regression analysis: examples 
6. 6/34 Linear regression analysis: examples 
7. 7/34 The Regression task 
8. 8/54 Classical Linear Regression (OLS) 
9. 9/54 Classical Linear Regression (OLS) 
10. 10/54 Classical Linear Regression (OLS) 
11. 11/54 Classical Linear Regression (OLS) 
12. 12/54 Classical Linear Regression (OLS) 
13. 13/54 Classical Linear Regression (OLS) 
14. 14/54 Classical Linear Regression (OLS):Multiple regression 
15. 15/54 Classical Linear Regression (OLS):Ordinary Least Squares estimation 
16. 16/54 Classical Linear Regression (OLS):Ordinary Least Squares estimation 
17. 17/59 
18. 18/59 
19. 19/59 
20. 20/59 
21. 21/59 How to Choose k or h? 
22. 22/59 
23. 23/59 
24. 24/59 
25. 25/59 
26. 26/59 
27. SVR Study : Model Training, Selection and Prediction 27/59 
28. 28/59 
29. 29/34 
30. 30/34 
31. 31/34 
32. 32/34 
33. 33/34 
34. 34/34 Conclusion / Summary / References