1 / 47

ECIV 520 A Structural Analysis II

ECIV 520 A Structural Analysis II. Stiffness Method – General Concepts. Engineering Systems. Lumped Parameter (Discrete). Continuous. A finite number of state variables describe solution Algebraic Equations. Differential Equations Govern Response. Lumped Parameter.

aysel
Télécharger la présentation

ECIV 520 A Structural Analysis II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECIV 520 A Structural Analysis II Stiffness Method – General Concepts

  2. Engineering Systems Lumped Parameter (Discrete) Continuous • A finite number of state variables describe solution • Algebraic Equations • Differential Equations Govern Response

  3. Lumped Parameter Displacements of Joints fully describe solution

  4. Basic Equations Matrix Structural Analysis - Objectives Use Equations of Equilibrium Constitutive Equations Compatibility Conditions OR Energy Principles Form [A]{x}={b} Solve for Unknown Displacements/Forces {x}= [A]-1{b}

  5. Terminology Element: Discrete Structural Member Nodes: Characteristic points that define element D.O.F.: All possible directions of displacements @ a node

  6. Linear Strain-Displacement Relationship • Small Deformations Assumptions • Equilibrium Pertains to Undeformed Configuration

  7. The Stiffness Method Consider a simple spring structural member Undeformed Configuration Deformed Configuration

  8. Derivation of Stiffness Matrix d1 d2 P1 P2

  9. d2 1 P 1 d1 = Derivation of Stiffness Matrix + For each case write basic equations

  10. P 1 d1 Equilibrium Case A Constitutive

  11. d2 Equilibrium Case B Constitutive

  12. A B Case A+B

  13. Stiffness Matrix d1 d2 P1 P2

  14. A Fix Fix B Fix Fix C Fix Fix Consider 2 Springs k1 k2 1 2 3 2 elements 3 nodes 3 dof

  15. Equilibrium Case A – Spring 1 Fix d1 P1 P2 Constitutive

  16. Case A – Spring 2 Fix Fix d1 P3 P2 Constitutive Equilibrium

  17. Case A Fix Fix d1 P1 P2 P3 For Both Springs (Superposition)

  18. Case B – Spring 1 P1 d2 Constitutive Equilibrium

  19. Case B – Spring 2 P2 P3 d2 Constitutive Equilibrium

  20. Case B P1 P3 P2 d2 For Both Springs (Superposition)

  21. Case C – Spring 1 P1 P2 d3 Constitutive Equilibrium

  22. Case C – Spring 2 P2 P3 d3 Constitutive Equilibrium

  23. Case C Fix Fix For Both Springs (Superposition)

  24. A B C Case A+B+C

  25. 2-Springs

  26. Use Energy Methods Lets Have Fun ! Pick Up Pencil & Paper

  27. Use Energy Methods

  28. 2-Springs Compare to 1-Spring

  29. d1 d2 d3 1 2 3 1 2 3 Use Superposition

  30. 1 2 3 1 2 3 Use Superposition

  31. X X 1 2 3 1 2 3 X X Use Superposition

  32. X X 1 2 3 1 2 3 X X Use Superposition

  33. 0 0 1 2 3 1 2 3 DOF not connected directly yield 0 in SM Use Superposition

  34. Properties of Stiffness Matrix • SM is Symmetric • Betti-Maxwell Law • SM is Singular • No Boundary Conditions Applied Yet • Main Diagonal of SM Positive • Necessary for Stability

  35. Global CS k1 k2 d3 u2 u6 u4 u4 d1 u1 u3 u3 u5 y P x x Local CS d2 d2 Transformations Objective: Transform State Variables from LCS to GCS

  36. P2x P2y Global CS 1 2 P1x y P1y = -P1xsinf + P1ycosf P1y P1x P1x = P1xcosf + P1ysinf P1y cosf sinf P1x x = P1x -sinf cosf P1y P1y P1 P1 = T Transformations f

  37. or -1 -1 P2 P1 P2 P1 = = T T Similarly for u or P2 u1 u2 P1 u1 P2 P1 u2 = = = = T T T T Transformations In General

  38. P1y P2x P2y d1 1 -1 P1 k = 2 1 P2 -1 1 d2 P2 P1x f 1 0 -1 0 u1x P1x K u P 0 0 0 0 u1y P1y P1 = k -1 0 1 0 u2x P2x 0 0 0 0 u2y P2y Transformations Element stiffness equations in Local CS Expand to 4 Local dof

  39. Transformations

  40. Transformations

  41. K u P = K R R u P = -1 R K R u P = K : Element SM in global CS SM in Global Coordinate System Local Coordinate System… Introduce the transformed variables…

  42. [T] [0] [R]= [0] [T] Transformations In this case (2D spring/axial element) In General Both R and T Depend on Particular Element

  43. Pk Pj Pi m i k l j Boundary Conditions

  44. kii kij kik kil kim ui Pi uj Pj kji kjj kjk kjl kjm uk = Pk kki kkj kkk kkl kkm ul Pl kli klj klk kll klm um Pm kli klj klk kll klm -1 uf= Kff (Pf + Kfsus) Apply Boundary Conditions uf Pf Kff Kfs Ksf Kss us Ps Kffuf+ Kfsus=Pf Ksfuf+ Kssus=Ps Ksfuf+ Kssus=Ps

  45. Derivation of Axial Force Element Fun!!!!!

  46. Example P da Calculate nodal displacements for (a) P=10 & (b) da=1

  47. In Summary • Derivation of element SM – Basic Equations • Structural SM by Superposition • Local & Global CS • Transformation • Application of Boundary Conditions • Solution of Stiffness Equations – Partitioning

More Related