1 / 26

A Chiral Random Matrix Model for 2+1 Flavor QCD at Finite Temperature and Density

A Chiral Random Matrix Model for 2+1 Flavor QCD at Finite Temperature and Density. Takashi Sano (University of Tokyo, Komaba ), with H. Fujii , and M. Ohtani.

baruch
Télécharger la présentation

A Chiral Random Matrix Model for 2+1 Flavor QCD at Finite Temperature and Density

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Chiral Random Matrix Model for 2+1 Flavor QCD at Finite Temperature and Density TakashiSano (UniversityofTokyo,Komaba), with H. Fujii, and M. Ohtani • UA(1)breakingandphasetransitioninchiralrandommatrixmodelarXiv:0904.1860v2 [hep-ph](toappear inPRD)TS,H.Fujii&M.Ohtani • Work in progress , H. Fujii & TS

  2. Outline • Introduction • Chiral Random Matrix Models • ChRMModelswithDeterminantInteraction • 2 & 3 Equal-mass Flavor Cases • Extension to Finite T & m with 2+1 Flavors • Conclusions&FurtherStudies

  3. 1. Introduction

  4. Introduction: Chiral Random Matrix Theory ReviewedinVerbaarschot&Wettig(2000) • Chiral random matrix theory • Exact description for finite volume QCD • A schematic model with chiral symmetry • In-mediun Models • ChiralrestorationatfiniteT • Phasediagram in T-m • Signproblem,etc… • U(1)problem & resolution(vacuum) Jackson&Verbaarschot(1996) Wettig, Schaefer & Weidenmueler(1996) Halaszet.al.(1998) Han & Stephanov (2008) Bloch, & Wettig(2008) Janik, Nowak, Papp, & Zahed (1997) Known problemsatfiniteT Phasetransitionis2nd-orderirrespectiveofNf Topologicalsusceptibility behavesunphysically Ohtani,Lehner,Wettig&Hatsuda(2008)

  5. 2.Chiral Random MatrixModels

  6. Chiral Random Matrix Models • Model definition(Vacuum) • Partition function Shuryak & Verbaarschot (1993) Gaussian • Dirac operator: :Chiral Symmetry : :Complex random matrix • Topologicalcharge: • Thermodynamic limit: #of(quasi-)zeromodes

  7. Effective Potential W in the Vacuum Gaussian integral over W  Hubbard-Stratonovitch transformation  Ω Theeffectivepotential φ Broken phase

  8. FiniteTemperatureChRMModel Ω • Deterministicexternalfield t Jackson&Verbaarschot(1996) • Chiral symmetry is restored at finite T t=4 t=1 t=0.2 effective potential φ • 2nd-orderfor any number ofNf • Inadequate as an effective model for QCD Determinant interaction should be incorporated • Temperatureeffect:periodicityinimaginarytime Howtoincludethedeterminantinteraction?

  9. as N   T/Tc Unphysical Suppression of ctop Adopted from Ohtani’sslide(2007) ChRMmodel lattice Ohtani,Lehner,Wettig&Hatsuda(2008) B. Alles, M. D‘Elia&A. Di GiacomoNPB483(2000)139 Our model describes physical & Nf-dependent phase transition Theeffectivepotentialisnotanalyticatn=0(includes|n|term)

  10. 3.ChRMmodelswithdeterminant interaction

  11. Extension of Zero-mode Space Janik,Nowak&Zahed(1997) • N+, N-: Topological (quasi) zero modes = instanton origin(localized) • 2N : near zero modes  temperature effects • N+=N-=0  reduced to conventional model with n=0 Lehner,Ohtani, Verbaarschot,&Wettig(2009)

  12. Sum overInstantonDistribution Example: Poisson dist. (free instantons) ‘ Hooft (1986) ‘t Hooft int. Nf=3 W Unfortunately… f Unbound potential • f^3 termsdominate (Nf=3)

  13. Binomial Distribution forN+, N- TS,H.Fujii&M.Ohtani(2009) cells • .  Regularized distribution W Binomial f 1-p p p:singleinstantonexistenceprobability Poisson Withbinomialsummationformula, :unitcellsize ‘t Hooft int. appears under the log. Stablegroundstate With this distribution, the effective potential become • The potential is bounded. • Anomalous UA(1) breaking is included. γ,p:parameters

  14. 4. 2 & 3 Equal-mass Flavors

  15. Nf DependentPhase Transition S=1, a=0.3, g=2 Nf=2 Nf=3 1st 2nd • 2nd-order for Nf=2, 1st-order for Nf=3 in the chirallimit

  16. Topological Susceptibility Nf=2 Nf=3 • Nounphysicalsuppression • correct q dependence: Axial Ward identity:

  17. Mesonic Masses • Anomaly makes hheavy • Consistent with Lee & Hatsuda (1996) Nf=2 Nf=3 d(s) m=0.10 m=0.10 d(s) s(s0) s(s0) h(ps0) h(ps0) p(ps) p(ps)

  18. 5. Extension to Finite T & m with 2+1 Flavors

  19. Conventional Model at Finite T & m Halaszet.al.(1998) W equal-mass m=T=0 f • m-m symmetry T m Independent of Nf m

  20. Proposed Model atFiniteT&m W equal-mass Nf=3 m=T=0 near-zero mode f • S can be absorbed: S=1 • a & g : “anomaly effects”

  21. m=0 Plane • Criticallineonmud-msplane • TCPonmsaxis g=1 crossover

  22. CriticalSurface • Positivecurvatureforallm a=0.5,& g=1 Tri-critical line

  23. Equal-mass Nf=3Limit Q. How does the curvature depend on a & g? g=1 g A. Curvatureatm=0seemspositiveforwholeparameters a

  24. m-dependent a 2 g=1, a0=0.5, & m0=0.2 • Negative curvature can be generated

  25. Conclusions&FurtherStudies • We have constructed the ChRM model with U(1) breaking determinant term • Stable ground state solution  binomial distribution • 1storderphasetransition for Nf=3 at finite T • Physicaltopologicalsusceptibility &Axial Ward identity • We apply the model to the 2+1 flavor case at finite T & m • Critical surface: Positive curvature for constant parameters • Outlook • More on the 2+1flavorcase(inprogress) • Isospin&strangeness chemical potential • Color superconductivity • …etc cf.Vanderheyden,&Jackson(2000)

  26. Thankyou

More Related