1 / 43

Results from BELLE and BaBar

This paper presents the results from the BELLE and BaBar experiments at the KEKB asymmetric energy e+e- collider, focusing on B-physics and selected topics of new results. The methods used to extract B-meson signals, as well as the suppression of background and continuum, are discussed.

bconway
Télécharger la présentation

Results from BELLE and BaBar

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Results from BELLE and BaBar Mt. Tsukuba KEKB Belle ~1 km in diameter Gerhard LEDER Hephy Vienna-ÖAW KEK 高エネルギ • Experiments/Tools • B-Physics • Selected topics of new Results

  2. Asymmetric Energy e+e- Collider 590 340

  3. Detectors

  4. Procedure to extract B Signal Use special Kinematics of Y(4S) Two nearly independent variables MB and DE can be used to select B meson signal: * MB = (Ebeam)2 – (S Pi)2 DE = SEi - Ebeam * Methods to extract B signal yield: 1) Cut on MB and fit to DE 2) Cut on DE and fit to MB 3) Double dimensional fit to MB and DE distribution 4) If B->P1P2P3: cut DEand MB box and look at resonant structures in M(P1P2) mass distribution.

  5. qq e- e+ Other B continuum Y (4S) e+ e- - BB Signal B Continuum Suppression Dominant Background for rare Decays: Continuum e+e-qq “continuum” (~3x BB) Jet-like To suppress: use event shape variables Fox-Wolfram moments Angle between B meson and beam axis direction BB spherical

  6. Unitarity Triangle dsb u Vud Vus Vub c Vcd Vcs Vcb t Vtd Vts Vtb B0->ππ B0->rr B0->J/Ks B0->fKs B0->D(*) D(*) B0-> D*π B0->D*r B->DCPK CKM-Matrix {i=1,k=3}: Vub*Vud+Vcb*Vcd+Vtb*Vtd = 0 Vub*Vud Vcb*Vcd Vtb*Vtd Vcb*Vcd  + 1 + = 0 -(rih) -(1-rih) Self-consistent if SM is correct!! rih Unitarity Triangle rih Vtb*Vtd Vcb*Vcd f2 Vub*Vud Vcb*Vcd (a) f3 f1 1 (g) (b) 0

  7. Time-Dependent CP Asymmetry • The CP violationmanifests itself inproper-time differencedistributionsof two B meson decays. • The time-dependent CP asymmetry ACPis: • Standard Model prediction:S(ccs)= sin2f1, A(ccs)= 0S(sss)= sin2f1, A(sss)= small

  8. Principle of Measurement BCP e-: 8.0 GeV e+: 3.5 GeV e- e+ fCP (J/yK0) (4S) bg ~ 0.425 Btag DzcbgtB ~ 200 mm = Flavor tag Dz • Reconstruct BJ/yK0 Decays • proper-time difference: Dt • Get flavor from Btag • Calculate CP Asymmetry from both Dt Distributions

  9. =0.685 ±0.032 Reference Point:precision sin2b 227x106 BB 386x106 BB BaBar 2004: Belle 2005: background

  10. 2005 results: Bkg subtracted B+ - projections sin2a sin2F2 B0 tagged B0 tagged p+p− Yield 4s signal for Direct CPV p+p− ACP DE-Mbc 2D fits to individual time intervals Dt (ps) &

  11. 2005: Status of B+ - Belle 275M Spp BABAR 227M ~2.3s difference between Belle and BABAR - App (Cpp )

  12. Somov, Schwartz et al hep-ex/0601024 CPV in B+- Measuring F2 (274  106 BB pairs) q=1 q=-1 sin2F2 Results: Low quality tag High quality tag No CPVF2 is near 900

  13. Constraints on 2 (α) B [PRL95,101801(2005)]&  combined    Fit at 90% CL

  14. * Vud Vub 2(a) * Vtd Vtb 3(g) 1(b) Vcd Vcb * Measuring g(f3) in B → DK In general: need ≥ 2 amplitudes with different weak and strong phases leading to the same final state Critical parameter: Relative amplitude rB, weak phase g and strong phase dB • Use additional dof in D decay to determine simultaneously rB, g, dB • Three methods on the market: • GLW, ADS, D0 Dalitz(GGSZ)

  15. r r “Belle” method for f3: Dalitz Poluektov et al hep-ex/0604054 (subm. PRD) 3) fCOM= D0KSp+p- φ3=53.3 -17.7° +14.8 B+: |A2| |A1| r = Obtain from tagged D0 (D*+ D0p+) Continuum sample WA: CKM-Fitter B-: +13.9 g=59.8 -7.9° B-: CPV: Asymmetry in Dalitz dist.: m+=m(Ksp+), m-=m(Ksp-)

  16. Other Measurements Related to b sin2b in B →J/yp0(bccd) • Color-suppressed tree gives sin2b (no penguin) • b → d penguin pollution (small unless NP) • cos2b in B →J/y K*(KSp0) Time-dependent angular analysis : Itoh et al: PRL 95(2005)091601 cos2f1 hep-ex/0603012 =0.87±0.74±0.12 > 0.

  17. CP angles only cos2b >0. f1~70o Ambiguity removed by i.e.Dalitz analysis of B0D0(Ksp+p-)h0 Krokovny etal hep-ex/0605023(subm PRL) or B0J/yK*(Ksp0) Disfavored >2s f1~70o sin2f1 2-fold ambiguity 2f1 p-2f1 f1~20o f1~20o f1

  18. Sin2beff in b → (qqs) Penguins Searching for New Physics in the loop (2 examples) (r) Look in B0→ (be creative)K0: …and hope Dsin2b ≠ 0 B0r Ks „sin“ 2b= 0.17±0.52± 0.26 First Measurement! B0FK0

  19. Summary of sin(2b) in Penguins Results Representative theory estimates >>all systematically below sin(2b) >>QCD corrections : sin2b(penguin)>sin2b(tree) Naïve2 Average: 0.50 ± 0.06(2.8s) sin2φ1(penguin)-sin2φ1(tree)

  20. How about the CKM triangle’s sides? Dmd & b  d g * Vud Vub 2(a) b  u ℓ-n & B- ℓ-n Vtd Vtb * 1(b) 3(g) * Vcd Vcb b  c l n

  21. Electron energy at endpoint Pth = 1.9 GeV/c Systematic limited Belle Inclusive |Vub| Limosani et al PLB 621, 28 • Hadronic and leptonic • invariant mass (Mx, q2) • Use full recon tag. • P+ also measured. Bizjak et al PRL 95, 141801 • Non-experimental error dominated by errors of shape function parameters. PDG 2002: (3.6  0.7) x 10-3

  22. Inclusive |Vub| Summary Vub=4.45+/-0.20+/-0.26 x 10-3 DVub @7.5%!

  23. First Observation of bd  signal qq K*g other B Mohapatra. Nakao, Nishida et al hep-ex/0506079 CDF CDF _ Addresses the same physics issue as Bs- Bs mixing

  24. Additional Constraints for Unitary Triangle    

  25. Current status Constraints from “Loop” Constraints from tree CPV angles only: η=0.321±0.027 =0.193±0.57 sides only: η=0.342±0.02 =0.216±0.06

  26. New physics in EW penguins? FB asymmetry in BK(*)l+l- 2005, L=357fb-1 Bl- B + - l l 3.4 s from 0 K(*) 114±13 ev. Bl- Interference between vector O7 (electromagnetic)+O9(semileptonic) and axialvector O10(semileptonic) operators Wilson coefficients

  27. Signal Remaining energy of signal B in ECL One B (tag) fully reconstructed Ikado et al hep-ex/0604018

  28. Single best measurement of decay constant! c s New: Ds → mn and fDs • Helicity-suppressed leptonic decay: • directly related to decay constant fDs • feeds interpretation of B, Bs mixing • Analysis Method: “D reco” in e+e-→ cc D reco side Signal peak in (normalize to Ds → fp) BaBar (230fb-1): Lattice QCD: BaBar

  29. Finds lots of new mesons :some puzzles Choi et al, PRL 89 112001 Z(3931) cc2’? Choi et al , PRL 91 262001 hc’ X(3872) Uehara et al , PRL 96 082003 Y(3940)wJ/y e+e-cccc Choi et al , PRL 94 182002 ?? Pakhlov et al , hep-ex/0507019 M(wJ/y) MeV

  30. New baryons: c0(2800), c+(2800), c++(2800) observed in c mass spectra Mizuk et al PRL 94,122002(2005) Background subtracted spectra Feed-down from c(2880) c Feed-down from c(2880) c 2005, L=281fb-1 Tentative identification: admixture of c2 & c1 JP=3/2-

  31. 288fb-1 Run5! A New Charm Baryon: Λc(2940)+ Observed in e+e-→ cc, Lc(2940)+→ D0p hep-ex/ 0603052 Λc(2880) First observation of Λc(2940)+ Λc(2940) First observation of Λc(2880)+ D0p sidebands

  32. Summary Both experiments show that the CKM-ansatz works extremely well for tree processes Verified with high precision= an „anchor point“ for NP CP-Violation in penguins is a sensitive probe for NP Experimentally and theoretically clean Measuring penguin Bf down to 10-6 with high precision Pure leptonic decays B t n and Ds m n Unexpected discoveries = New mesons and baryons Expect more in the future

  33. Spares

  34. Summary f3 error ~100 ?? B+t+n cc2’ X(3940), Y(3940) bd penguins (bdg BKK) DD-mixing (world’s best limit) f2 error~100 |Vub| error <10% Sc* baryon triplet Direct CPV in BK+p- X(3872) BK*ℓ+ℓ- EW penguin D0*0 & D1*0 mesons CPV in B decays hc’ & e+e-cccc

  35. Continuum Suppression • To separate spherical BB events from jet-like continuum events, topological variables are used: • Second Fox-Wolfram moment • Super Fox-Wolfram • (six modified Fox-Wolfram moments, Fisher discriminant) • 3) Angle between B meson and • beam axis direction • 4) Angle between thrusts of • selected B meson particles and all other particles in event • Likelihood ratio includes all info.

  36. Measuring a in B → rr Best mode for a: ~100% longitudinally polarized fL ~ 100%  CP » +1 • quasi-two-body approx Ok • no rpp → ignore interference • null search for r0r0 B(r0r0) << B(r+r), B(r+r0) < 1.1 30  6 (26  6 ) x 10-6 New measurement of r+r0: 230 M(BB)

  37. Belle’s measurement of ACP(B0 0 ) Chao, Chang et al, PRL 94 181803 275M BBbar pairs

  38. New Results for the GLW Method (D → fCP) hep-ex/0512067 232 M(BB) 4 observables (ACP+-,RCP+-) to determine rB, g, dB 131 CP+ • Theoretically clean • B → Dp background • Limited statistics 148 CP- New from BaBar: D0 KSw, KSf

  39. Measuring sin(2b+g) in B → D(*)p, Dr Same idea: interference between b → c and b → u But now D flavor known, B flavor unknown→mixing Vcd Suppressed V*ud Interference V*ub Favored Vcb u,c,t u,c,t Time-Dependent CPV Analysis Large rate for favored decay, but small CP asymmetry!

  40. 275M BB Neu ACP(B0 K+p-) _ B0 K-p+ B0 K+p- Signal: 2139 53 [submitted to PRL] ACP = -0.101  0.025  0.005 3.9ssignificance [PID efficiency bias correction: dA = -0.01  0.004] Evidenz for DCPV Belle [A(p+p-) 3.2s]

  41. New baryons: cx(3077)+ 2006, L=462 fb-1 Initial motivation: checking SELEX cc(3519)+cK-+ No cc signal observed But Two new excited charm strange baryons found cx(2980)+ wrong-sign c+K+- Preliminary Both cxc K  are not identified yet New decays mechanism of charmed baryons: c and s quarks are carried away by different final state particles

  42. p e- D* Breco e+ Bsignal D* X More Studies of DsJ(2317) and DsJ(2460) Hep-ex/0605035 First measurement of absolute BFs Look for resonance structure in B recoil Combine with previous measurements of partial rates to obtain absolute BFs: = 0.70 +- 0.15 (where’s the rest?)

More Related