120 likes | 238 Vues
This document provides a comprehensive introduction to clustering techniques, focusing on Agglomerative Hierarchical Clustering and Self-Organizing Maps (SOMs). It explores the basic principles and applications of these methods in data analysis, offering insights into their functionalities and use cases. The content is aimed at individuals seeking to understand these clustering approaches in depth, including how they can be utilized for effective data segmentation and pattern recognition.
E N D
vti_cachedlinkinfo:VX|H|http://www.mathworks.com/access/helpdesk/help/toolbox/images/intro6.shtml#17587 H|http://www.mathworks.com/access/helpdesk/help/toolbox/images/intro7.shtml#13941 H|#2 H|http://www.predictivepatterns.com/docs/WebSiteDocs/Clustering/Agglomerative_Hierarchical_Clustering_Overview.htm H|http://www.predictivepatterns.com/docs/WebSiteDocs/SOM/Overview_of_Self-Organizing_Maps_SOMs_.htm
vti_cachedsvcrellinks:VX|NHHS|http://www.mathworks.com/access/helpdesk/help/toolbox/images/intro6.shtml NHHS|http://www.mathworks.com/access/helpdesk/help/toolbox/images/intro7.shtml FHUS|CIS601-03/Projects/Anisa/Segmenatation.ppt NHHS|http://www.predictivepatterns.com/docs/WebSiteDocs/Clustering/Agglomerative_Hierarchical_Clustering_Overview.htm NHHS|http://www.predictivepatterns.com/docs/WebSiteDocs/SOM/Overview_of_Self-Organizing_Maps_SOMs_.htm
vti_backlinkinfo:VX|cis601-03/projects/anisa/segmenatation.pptvti_backlinkinfo:VX|cis601-03/projects/anisa/segmenatation.ppt