240 likes | 921 Vues
Pengertian Umum Sistem Manufaktur. D0394 Perancangan Sistem Manufaktur Pertemuan I - II. Definisi Manufaktur.
E N D
Pengertian Umum Sistem Manufaktur D0394 Perancangan Sistem Manufaktur Pertemuan I - II
Definisi Manufaktur • Manufacturing – Suatu kumpulan operasi dan aktifitas yang berkorelasi untuk menghasilkan produk, seperti perancangan produk, pemilihan bahan baku, perencanaan, pemrosesan, inspeksi, dan manajemen. • Manufacturing process – Aktifitas manufaktur merubah bentuk suatu produk dengan mesin-mesin seperti, milling, drilling dll. • Assembly – Kumpulan dari semua proses dengan mana bermacam komponen dan sub perakitan dibentuk bersamaan untuk membentuk rancangan rakitan atau produk secara geometris secara lengkap. • Manufacturing System – Suatu pengorganisasian beberapa proses manufaktur dan perakitan yang saling berinteraksi. Tujuannya adalah untuk menjembatani dengan diluar fungsi produksi berkenaan dengan mengoptimasikan produktifitas kinerja sistem.
Manufacturing – Historical Perspective • English system (1800s) • Memperkenalkan mesin-mesin yang digunakan secara umum yang dapat digunakan untuk produk yang bervariasi. • American system (1850s) • Menekankan pada presisi dan kemampuan untuk saling bertukar proses. Berubah dari “best fit” fokus kepada “greatest clearance without loss of functionality”. • Scientific management (1900s) • Prespecified worker motions - Moved the control totally into thehands of management. • Process improvement (SPC) (1950s) • Identical procedures produce different results on same machine atdifferent times. Emphasized outliers instead of mean performance.
Manufacturing – Historical Perspective • Numerical control (1970s) • Combining the versatility of general purpose machines with theprecision and control of special-purpose machines. • Computer integrated manufacturing (1980s) • Pervasive use of computers to design products, plan production,control operations, and perform various business-related functions. • Agile Manufacturing / Mass Customization (1990s) • Creation of highly flexible organizational structures that allowsystems to produce highly customized product
Characterized by: Number of machines Number of part types Part routes through the system Processing times Machine setups Demand patterns Raw material/component availability Equipment layout/configuration Operator availability Machines “Finished” Products Raw Material Manufacturing System
Interested in: Lead time for products Cost of processing Decisions include: System configuration Scheduling methods Machines “Finished” Products Raw Material Manufacturing System
Manufacturing System Configurations • Job Shop • Process layout that groups functionally similar machines • Flow Line • Product layout that groups machines based on a product’s flow • Cellular Manufacturing System • Hybrid layout that groups similar parts and the corresponding processing machines • Flexible Manufacturing System is an automated application • Project Shop • Product is fixed and people and equipment brought to it • Continuous Process
T T D T T D T T M G G M M M M M G G D G Manufacturing System Configurations Flow Line Configurations Job Shop Configuration
Cell 2 Cell 1 Cell 4 Cell 3 Manufacturing System Configurations Cellular Configuration
High Low Low High Product Volume vs. Product Variety Continuous Flow Line / Transfer Line Cellular / Flexible Mfg. Sys. Volume Job Shop Variety
Manufacturing System Design Manufacturing System Design Resource Requirement Resource Lay Out Material Flow Buffer Capacity
Manufacturing System Operation • Operation Decomposition • Planning • Deciding what to do • Scheduling • Deciding when to do what you planned • Execution • Carrying out the planned tasks according to the schedule • Hierarchical System Structure • Shop • Workstation • Equipment
Principles of Manufacturing Systems • Little’s Law • WIP = Production Rate × Throughput Time (L=λW) • Matter is conserved • Larger scope implies reduced reliability • Objects decay • Exponential growth in complexity • M components, N states ==> NM possible system states
Principles of Manufacturing Systems • Technology advances • System components appear to behave randomly • Limits of (Human) rationality • Combining, simplifying, and eliminating save time,money, and energy
Manufacturing Systems Overview • Product Design • Process Planning • Production System Design • Production Planning • Operational Planning • Shop Floor Control • Execution
Idea Generation (Product Design) Feasibility Study (Performance Specification) Preleminary Design (Prototype) Final Design (Final Design Specification) Process Planning (Manufacturing Specication) Product Design • Idea • Understanding and identifying customer needs • Initial Design • Feasibility study to determine initial functionality • Prototype • Market Research • Market potential, economic analysis, strategic assessment • Design Refinement • Functional specifications • Detailed Specifications • Detailed design considering functions, quality/reliability, manufacturing, etc.
Product Design (Cont.) • Functional analysis • Customer specifications • Product reliability • Design for X • Manufacture or Assembly • Simplification, standardization, modularization • Testing • Repair • Robustness to variations • Concurrent engineering • Consider how product will be manufactured (process and productionplanning) during design phase • Reduce cost and time to market
Product Design (Cont.) • Computer-Aided Design • Use of computer graphics to assist in the creation, modification,and analysis of a design • Common uses • Geometric modeling • Automated drafting and documentation • Engineering analysis • Design analysis • CAD/CAM • Generation of manufacturing instructions directly from CADdesign data
Sale Product Life Cycle • Production System(Manufacturer) Perspective • Design • Ramp-up • Maturity • Decline • Product (Consumer)Perspective • Inception • Design • Production • Use • Maintenance and repair • Disposal • Reuse, recycle, scrap Time
Production System Life Cycle • Lifecycle • Inception • Design • Construction • Startup • Use • Closure • Relationship to product lifecycle • Typically production system lifecycle is longer than an individualproduct’s lifecycle • Production system will revert to earlier stages in its lifecycle whennew products are introduced • Extent and cost depends on system flexibility