1 / 7

ROLL WG Omprakash Gnawali and Philip Levis Stanford University 6/16/2010

The Minimum Rank Objective Function with Hysteresis (MRHOF) draft-gnawali-roll-minrank-hysteresis-of-00. ROLL WG Omprakash Gnawali and Philip Levis Stanford University 6/16/2010. RPL and Objective Functions. Objective functions Compute the rank based on metrics

betty
Télécharger la présentation

ROLL WG Omprakash Gnawali and Philip Levis Stanford University 6/16/2010

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Minimum Rank Objective Function with Hysteresis(MRHOF)draft-gnawali-roll-minrank-hysteresis-of-00 ROLL WG Omprakash Gnawali and Philip Levis Stanford University 6/16/2010

  2. RPL and Objective Functions • Objective functions • Compute the rank based on metrics • Select parent among candidate next hops • Metric Examples • Hop count (OF0) • Throughput • ETX • De-coupled from the metrics

  3. The Minimum Rank Objective Function with Hysteresis (MRHOF) • Applicable metrics • Listed in I-D.ietf-roll-routing-metrics • Additive • Global • Metric minimization as routing objective • Based on experiences with ETX • Might be applicable to latency and other metrics

  4. Some Terminology • Selected metric • The routing metric to minimize • Path metric • Composed of link metrics over the links on a path • Is path metric the same as rank? • How to translate ETX (NTX) or latency (ms) to rank?

  5. Metric Minimization • Compute the Path metric and parent • At the root • cur_min_path_metric = MIN_PATH_METRIC • On other nodes • candidate_min_path_metric(i) =Link metric to a candidate i + Path metric from ito the DAG root • cur_min_path_metric = Min{candidate_min_path_metric(1..n)} • Parent = candidate whose cost is equal to cur_min_path_metric • Examples • ETX: Paths with the smallest expected transmit count • Latency: Least latency paths

  6. Hysteresis • Link metric can have jitter • Example: ETX jitter due to changing link quality • Can cause churn in the topology • Hysteresis delays the effects • Short-term and small changes in link properties should not trigger path recomputation • Change parent if the new path metric is better by at least PARENT_SWITCH_THRESHOLD

  7. Other Considerations • Frequency of updates • Periodic • Reactive • Metric-specific parameters • Max and min • Route switching threshold • Tie-breaker

More Related