1 / 26

Understanding MPI in Parallel Computing

Explore basics of MPI, Message Passing Interface, message passing programs, and MPI communication in C and Fortran. Learn collective communication and techniques for parallel processing.

bknouse
Télécharger la présentation

Understanding MPI in Parallel Computing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS 584

  2. Message Passing • Based on multi-processor • Set of independent processors • Connected via some communication net • All communication between processes is done via a message sent from one to the other

  3. MPI • Message Passing Interface • Computation is made of: • One or more processes • Communicate by calling library routines • MIMD programming model • SPMD most common.

  4. MPI • Processes use point-to-point communication operations • Collective communication operations are also available. • Communication can be modularized by the use of communicators. • MPI_COMM_WORLD is the base. • Used to identify subsets of processors

  5. MPI • Complex, but most problems can be solved using the 6 basic functions. • MPI_Init • MPI_Finalize • MPI_Comm_size • MPI_Comm_rank • MPI_Send • MPI_Recv

  6. MPI Basics • Most all calls require a communicator handle as an argument. • MPI_COMM_WORLD • MPI_Init and MPI_Finalize • don’t require a communicator handle • used to begin and end and MPI program • MUST be called to begin and end

  7. MPI Basics • MPI_Comm_size • determines the number of processors in the communicator group • MPI_Comm_rank • determines the integer identifier assigned to the current process • zero based

  8. MPI Basics #include <stdio.h> #include <mpi.h> main(int argc, char *argv[]) { int iproc, nproc; MPI_Init(&argc, &argv); MPI_Comm_size(MPI_COMM_WORLD, &nproc); MPI_Comm_rank(MPI_COMM_WORLD, &iproc); printf("I am processor %d of %d\n", iproc, nproc); MPI_Finalize(); }

  9. MPI Communication • MPI_Send • Sends an array of a given type • Requires a destination node, size, and type • MPI_Recv • Receives an array of a given type • Same requirements as MPI_Send • Extra parameter • MPI_Status variable.

  10. MPI Basics • Made for both FORTRAN and C • Standards for C • MPI_ prefix to all calls • First letter of function name is capitalized • Returns MPI_SUCCESS or error code • MPI_Status structure • MPI data types for each C type

  11. Using MPI • Based on rsh • requires a .rhosts file • hostname login • Path to compiler • MPI_HOME /users/faculty/snell/mpich • MPI_CC MPI_HOME/bin/mpicc

  12. Using MPI • Write program • Compile using mpicc • Write process file • host nprocs full_path_to_prog • 0 for nprocs on first line 1 for all others • Run program • prog -p4pg process_file args • mpirun –np #procs –machinefile machines prog

  13. Example • HINT benchmark • Found at /users/faculty/snell/CS584/HINT

  14. #include “mpi.h” #include <stdio.h> #include <math.h> #define MAXSIZE 1000 void main(int argc, char *argv) { int myid, numprocs; int data[MAXSIZE], i, x, low, high, myresult, result; char fn[255]; char *fp; MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD,&numprocs); MPI_Comm_rank(MPI_COMM_WORLD,&myid); if (myid == 0) { /* Open input file and initialize data */ strcpy(fn,getenv(“HOME”)); strcat(fn,”/MPI/rand_data.txt”); if ((fp = fopen(fn,”r”)) == NULL) { printf(“Can’t open the input file: %s\n\n”, fn); exit(1); } for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i]); } /* broadcast data */ MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD); /* Add my portion Of data */ x = n/nproc; low = myid * x; high = low + x; for(i = low; i < high; i++) myresult += data[i]; printf(“I got %d from %d\n”, myresult, myid); /* Compute global sum */ MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD); if (myid == 0) printf(“The sum is %d.\n”, result); MPI_Finalize(); }

  15. MPI • Message Passing programs are non-deterministic because of concurrency • Consider 2 processes sending messages to third • MPI does guarantee that 2 messages sent from a single process to another will arrive in order. • It is the programmer's responsibility to ensure computation determinism

  16. MPI & Determinism • MPI • A Process may specify the source of the message • A Process may specify the type of message • Non-Determinism • MPI_ANY_SOURCE or MPI_ANY_TAG

  17. Example for (n = 0; n < nproc/2; n++) { MPI_Send(buff, BSIZE, MPI_FLOAT, rnbor, 1, MPI_COMM_WORLD); MPI_Recv(buff, BSIZE, MPI_FLOAT, MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status); /* Process the data */ }

  18. Global Operations • Coordinated communication involving multiple processes. • Can be implemented by the programmer using sends and receives • For convenience, MPI provides a suite of collective communication functions.

  19. Collective Communication • Barrier • Synchronize all processes • Broadcast • Gather • Gather data from all processes to one process • Scatter • Reduction • Global sums, products, etc.

  20. Collective Communication

  21. MPI_Reduce MPI_Reduce(inbuf, outbuf, count, type, op, root, comm)

  22. MPI_Reduce

  23. MPI_Allreduce MPI_Allreduce(inbuf, outbuf, count, type, op, root, comm)

  24. Distribute Problem Size Distribute Input data Exchange Boundary values Find Max Error Collect Results

  25. Other MPI Features • Asynchronous Communication • MPI_ISend • MPI_Wait and MPI_Test • MPI_Probe and MPI_Get_count • Modularity • Communicator creation routines • Derived Datatypes

More Related