1 / 1

Non-Newtonian Fluid Mechanics: The Vorticity Decomposition

Non-Newtonian Fluid Mechanics: The Vorticity Decomposition. Lewis E. Wedgewood, Chemical Engineering Department Primary Grant Support: National Science Foundation, 3M Company. Construct a Theory that Allows the Vorticity to be Divided into an Objective and a Non-Objective Portion

bonner
Télécharger la présentation

Non-Newtonian Fluid Mechanics: The Vorticity Decomposition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Non-Newtonian Fluid Mechanics: The Vorticity Decomposition Lewis E. Wedgewood, Chemical Engineering Department Primary Grant Support: National Science Foundation, 3M Company • Construct a Theory that Allows the Vorticity to be Divided into an Objective and a Non-Objective Portion • Develop Robust Equations for the Mechanical Properties (Constitutive Equations) of Non-Newtonian Fluids using the Objective Portion of the Vorticity • Solve Flow Problems of Complex Fluids in Complex Flows such as Blood Flow, Ink Jets, Polymer Coatings, Etc. • Mathematical Construction of Co-rotating Frames (see Figure above) to Give a Evolution for the Deformational Vorticity (Objective Portion) • Finite Difference Solution to Tangential Flow in an Eccentric Cylinder Device • Brownian Dynamics Simulations of Polymer Flow and Relation Between Polymer Dynamics and Constitutive Equations • Continuum Theory And Hindered Rotation Models To Model Mechanical Behavior • Improved Understanding Of the Modeling of Complex Fluids • Applications to Structured Fluids such as Polymer Melts, Ferromagnetic Fluids, Liquid Crystals, etc. • Development Of Constitutive Relations Suitable For Design Of New Applications • Verification Of Hindered Rotation Theory And The Transport Of Angular Momentum In Complex Fluids

More Related