1 / 29

DETERMINING MEAN FIRST-PASSAGE TIME ON A CLASS OF TREELIKE REGULAR FRACTALS

第六届全国复杂网络会议 CCCN2010. DETERMINING MEAN FIRST-PASSAGE TIME ON A CLASS OF TREELIKE REGULAR FRACTALS. 报告人:林 苑 指导老师:章忠志 副教授 复旦大学 2010.10.17. PUBLICATIONS.

borna
Télécharger la présentation

DETERMINING MEAN FIRST-PASSAGE TIME ON A CLASS OF TREELIKE REGULAR FRACTALS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 第六届全国复杂网络会议 CCCN2010 DETERMINING MEAN FIRST-PASSAGE TIME ON A CLASS OF TREELIKE REGULAR FRACTALS 报告人:林 苑 指导老师:章忠志 副教授 复旦大学 2010.10.17

  2. PUBLICATIONS • [1] Lin Yuan(林苑), Wu Bin, Zhang Zhongzhi(指导教师). Exactly determining mean first-passage time on a class of regular fractals, Physical Review E, 2010, 82: 031140. • [2] Zhang Zhongzhi(指导教师), Lin Yuan(林苑), et al. Trapping in scale-free networks with hierarchical organization of modularity, Physical Review E, 2009, 80: 051120. • [3] Zhang Zhongzhi(指导教师), Lin Yuan(林苑), et al. Mean first-passage time for random walks on the T-graph, New Journal of Physics, 2009, 11: 103043. • [4] Zhang Zhongzhi(指导教师), Lin Yuan(林苑), et al. Average distance in a hierarchical scale-free network: an exact solution. Journal of Statistical Mechanics: Theory and Experiment, 2009, P10022. • [5] Zhang Zhongzhi(指导教师), Qi Yi, Zhou Shuigeng, Lin Yuan(林苑), and Guan Jihong. Recursive solutions for Laplacian spectra and eigenvectors of a class of growing treelike networks, Physical Review E, 2009, 80:016104. • [6] Zhang Zhongzhi(指导教师), Zhou Shuigeng, Xie Wenlei, Chen Lichao, Lin Yuan(林苑), and Guan Jihong. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect, Physical Review E, 2009, 79:061113.

  3. OUTLINE

  4. INTRODUCTION ABOUT RANDOM WALKS -

  5. INTRODUCTION ABOUT RANDOM WALKS -

  6. INTRODUCTION ABOUT RANDOM WALKS -

  7. INTRODUCTION ABOUT RANDOM WALKS -

  8. INTRODUCTION ABOUT RANDOM WALKS -

  9. IMPORTANT MEASURES OF RANDOM WALKS

  10. APPLICATIONS OF RANDOM WALKS • PageRank algorithm • Community detection • Recommendation systems • Electrical circuits (resistances) • Information Retrieval • Natural Language Processing • Machine Learning • Graph partitioning • In economics: random walk hypothesis

  11. APPLICATIONS OF RANDOM WALKS • Applications in real life

  12. OUR WORK: TRAPPING PROBLEM • Imagine there are traps (or absorbers) on several certain vertices. • We are interesting the time of absorption. • For simplicity, we first consider the problem that only a single trap.

  13. Determining mean first-passage time on a class of treelike regular fractals, Lin Yuan, Wu Bin, Zhang Zhongzhi, Physical Review E, 2010, 82:031140

  14. 网络构成

  15. 网络构成

  16. 网络构成:另一种方法 网络的构成具有自相似性

  17. 具有单个陷阱的随机游走

  18. 计算平均游走时间 这个结论对一般的树 拉拉状网络均成立。

  19. 计算平均游走时间

  20. 计算平均游走时间 将每一代新增加的点进行分类,分别计算。

  21. 结论(1) • 平均随机游走时间服从幂率分布; • 网络的参数m影响网络的吸收效率:随着m的增大,网络的吸收效率增高。

  22. 全局平均随机游走时间 • 将任一点作为陷阱的平均吸收时间; • 即网络上任意两点的平均首达时间(MFPT)。 • 计算全局平均随机游走时间的经典方法:计算拉普拉斯的伪逆矩阵。 • 时间复杂度 O(n3) • 空间复杂度 O(n2)

  23. 全局平均随机游走时间

  24. 全局平均随机游走时间

  25. 全局平均随机游走时间

  26. 结论(2) • 全局平均随机游走时间同样服从幂率分布。 • 陷阱位置对网络的吸收效率没有实质影响,原因在于网络的构造。

  27. 网络构成:另一种方法 网络的构成具有自相似性

  28. 小结 • 提出一类树状分形 • 中间点作为陷阱的随机游走 • 全局随机游走时间 • 对自相似网络具有普适性

  29. Thank you

More Related