1 / 12

以「合併法」解一階常微分方程式

以「合併法」解一階常微分方程式.  利用「微分」與「積分」的觀念 , 以觀察方式將微分方程式合併 成幾組常用的「全 微分 」組合 , 再積分、還原成原函數。. 「合併法」之優點.  合併法「迅速」而「直接」 , 常用於解「正合微分方程式」 。. 常用之「全微分」公式.  ydx + xdy = d ( xy )  dx ± dy = d ( x ± y ) 1  xdx ± ydy = ---- d ( x 2 ± y 2 ) 2 ydx - xdy x

brigit
Télécharger la présentation

以「合併法」解一階常微分方程式

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 以「合併法」解一階常微分方程式 利用「微分」與「積分」的觀念 ,以觀察方式將微分方程式合併 成幾組常用的「全微分」組合, 再積分、還原成原函數。 d8

  2. 「合併法」之優點 合併法「迅速」而「直接」, 常用於解「正合微分方程式」 。 d8

  3. 常用之「全微分」公式  ydx+xdy = d(xy)  dx±dy = d(x±y) 1 xdx±ydy = ----d(x2±y2) 2 ydx-xdyx  ------------- = d(----) y2y xdy-ydxy  ------------- = d(----) x2x 1 mydx+nxdy = -----------d(xmyn) xm-1yn-1

  4. 【例】解 xdx+ydy +(x2+y2)ydy = 0 --------------------------------------------------------- 1 Sol.原式為 ---d(x2+y2)+(x2+y2)ydy = 0, 2 即 d(x2+y2)+2(x2+y2)ydy = 0, d(x2+y2) 同除 (x2+y2) 成 -------------+2ydy = 0, x2+y2 積分得 ln(x2+y2)+y2 = C。 d8

  5. 【例】解 xdy-ydx +xy3dy = 0 --------------------------------------------------------- xdy-ydxy3dy Sol.同除 x2得 --------------+-------- = 0, x2 x yy3dy 即 d(----)+-------- = 0, xx y 1 y 再同除 ----得 ------d(----)+y2dy = 0, xy/xx y 1 積分得 ln|----|+----y3 = C。 x 3 d8

  6. 【例】解 xdy-ydx +xy3dy = 0 --------------------------------------------------------- 《另解》 將原式合併成 -ydx+x(1+y3)dy = 0, 1 1 同除 xy得 -----dx+----dy +y2dy = 0, xy 1 積分得 -ln|x|+ln|y|+----y3 = C, 3 y 1 即 ln|----|+----y3 = C。 x 3 d8

  7. 【練習】解 xdy+ydx +x2ydx = 0 --------------------------------------------------- Sol.原式為 (xdy+ydx)+x2ydx = 0, 即 d(xy)+x2ydx = 0, 1 同除 xy成 ----d(xy)+xdx = 0, xy 1 積分得 ln|xy|+----x2 = C。 2 d8

  8. 【練習】試解 (x2+y2+x)dx+xydy = 0 --------------------------------------------------------- Sol. 原式重組成 x2dx+xdx+y(ydx+xdy) = 0, 即 x2dx+xdx+yd(xy) = 0, 同乘 x成 x3dx+x2dx+xyd(xy) = 0, 1 1 1 積分得 ----x4+----x3+----(xy)2 = C。 4 3 2 d8

  9. 【例】解 4ydx +3xdy = 0 --------------------------------------------------------- 1 Hint.mydx+nxdy = -----------d(xmyn) xm-1yn-1 Sol.令m = 4,n = 3,則 1 4ydx+3xdy = --------d(x4y3), x3y2 1 故原式為--------d(x4y3) = 0, x3y2 即 d(x4y3) = 0,積分得x4y3 = C。 d8

  10. 【例】解 4ydx +3xdy = 0 --------------------------------------------------------- 4 3 《另解》各項同除 xy成 ----dx+----dy = 0, xy 積分得 4ln|x|+3ln|y| = C1, 即 ln|x4y3| = C1, ∴x4y3 = eC1≡C。 d8

  11. 【練習】解 (x2+3y2)dx +2xydy = 0 --------------------------------------------------------- 1 Hint.mydx+nxdy = -----------d(xmyn) xm-1yn-1 Sol.原式重組成 x2dx+y(3ydx +2xdy) = 0, d(x3y2) 即 x2dx+y ----------- = 0, x2y 同乘 x2成 x4dx+d(x3y2) = 0, 1 積分得 ----x5+x3y2 = C。 5

  12. 【練習】解 (x2+3y2)dx +2xydy = 0 --------------------------------------------------------- 《另解》 原式重組成 x2dx+(3y2dx +2xydy) = 0, 同乘 x2成 x4dx+(3x2y2dx +2x3ydy) = 0, 1 即 ----d(x5) +d(x3y2) = 0, 5 1 積分得 ----x5+x3y2 = C。 5 d8

More Related