810 likes | 1.1k Vues
Sound and Light. Unit 9 Chapter 12. Good vibrations. All sounds are caused by something that vibrates. 1. When these vibrations collide with air molecules (or another medium) – sound waves are formed 2. Sound waves are compressional waves - they have two regions called
E N D
Sound and Light Unit 9 Chapter 12
Good vibrations All sounds are caused by something that vibrates. 1. When these vibrations collide with air molecules (or another medium) – sound waves are formed 2. Sound waves are compressional waves - they have two regions called compressions and rarefactions.
Compressional Waves Rarefaction –air molecules pulled apart Compression –air molecules pushed together
Medium The type of matter that the sound waves travel through 1. A sound wave’s speed depends on the substance – solid liquid or gas. Sound need a medium ––it cannot travel in a vacuum! 2. Sound travels more quickly through solids and liquids because their particles are closer together than in a gas
How Much is faster? AIR 347 m/s CORK 500 m/s WATER 1,498 m/s BRICK 3,650 m/s ALUMINUM 4,877 m/s
Turn on the Heat! 3. As a medium’s temperature increases, the molecules move faster and bump into each other more often so it conducts sound faster! –
Speed of sound • The speed of sound depends on the medium. • Sound waves travel faster through liquids and solids than through gases. • The particles are much closer in liquids and solids so the vibrations are transferred much faster from one particle to the next. • EXCEPTS – Solids such as rubber dampen vibrations so that sound travels very slowly. Materials like this can be used for soundproofing!
How Loud is It? A. The amount of energy a wave carries corresponds to its amplitude, which is related to the density of the particles in the compressions and rarefactions 1. Intensity – The amount of energy that flows through a certain area in a specific amount of time 2. Loudness – human perception of sound intensity
Intensity Intensity of a sound describes the loudness at a particular distance from the source of the sound.
Measure It! 3. Sound intensity is measured in decibels a) Decibels are measured in a logarithmic scale and shown by the symbol db b) Increasing intensity by 3 db is 2 times as loud. 63 db is 2 X 60 db c) Increasing intensity by 10 db is 10 times as loud. 70 db is 10 X 60 db
Common Noises 1. weakest sound heard - 0 dB 2. normal conversation at 3-5 ft - 60-70 dB 3. dial tone of telephone - 80 dB 4. city traffic inside car - 85 dB 5. regular sustained exposure may cause permanent damage - 90-95 dB 6. power mower - 107 dB 7. power saw - 110 dB
Getting Really Loud 1. regular sustained exposure may cause permanent damage - 90-95 dB 2. average Ipod on 5/10 setting - 94 dB 3. bass drum rolls - 106 dB 4. amplified rock music at 4-6 ft. - 120 dB 5. Pain begins 125 dB 6. pneumatic riveter at 4 ft. - 125 dB 7. jet engine at 100 ft. - 140 dB 8. rock music peak - 150 dB 9. loudest sound that can occur - 194 dB
Pitch B. Pitch – how low or high a sound seems to be 1. Frequency is the number of compressions or rarefactions of a sound wave that pass per second – humans hear about 20 – 20,000 Hz 2. Ultrasonic – over 20,000. Is outside the range of human hearing. 3. Infrasonic or subsonic – below 20 Hz may be felt like a rumble but not heard. It is any frequency above human hearing range.
Doppler Effect C. Doppler effect – Change in pitch or frequency due to a moving listener or source
Music • Sounds that are deliberately used in a regular pattern • Natural Frequency ––the frequency at which the material vibrates • Resonance ––The ability of a medium to vibrate by absorbing energy at its own natural frequency
Sound Quality • The difference between sounds of the same pitch and loudness is sound quality • Overtone ––vibration with a frequency that is a multiple of the fundamental frequency
Musical Instruments • Devices used to make musical sounds • Strings • Sound produced by plucking, striking, or drawing a bow across tightly stressed strings bow strings • Brass and woodwinds ––air vibrations in a resonator or hollow chamber that amplifies sound – pitch determined by length of air tube • Percussion ––struck shaken rubbed or brushed struck brushed • Beats ––pulsing vibration in loudness pulsing loudness
Mechanics of the ear • The ear is divided into 3 parts or regions: • Outer • Middle • Inner
Mechanics of the ear cont. • Sound enters through the outer ear and down the ear canal. The ear canal ends with the eardrum (thin flat piece of tissue). • When sound hits the eardrum, it vibrates. • These vibrations pass through the small bones of the middle ear (Hammer, anvil, and stirrup) • When vibrations reach the stirrup, the stirrup strikes a membrane at the opening of the inner ear.
Mechanics of the ear cont. • The waves in the inner ear go through the spiral-shaped cochlea (also called the basilar membrane). • Different parts of the basilar membrane vibrate at different natural frequencies. • As the waves pass through the cochlea, they resonate with specific parts of the basilar membrane. • Hairs near this area stimulate nerve fibers which send an impulse to the brain. • The brain interprets this impulse as a sound with a specific frequency.
Sound • Used for entertainment, warning signals, information • Acoustics ––study of sound to create a good listening environment • Echolocation ––locating objects by sending out a signal and interpreting the waves reflected back
Sound • Sonar ––a system that uses the reflection of underwater sounds waves to locate objects underwater • Ultrasound ––used in medicine to diagnose, monitor, and treat many conditions • Can produce images of internal structures • Can treat certain medical problems such as kidney stones
Thomas Young • In 1801, Thomas Young devised an experiment to test the nature of light. He realized that the pattern created is similar to the pattern caused by water waves interfering such as the ripple tank.
Light can be modeled as a wave • We have learned light waves can be described as transverse wave which do not require a medium. • They are also called electromagnetic waves because they consist of changing electric and magnetic fields. • Light waves can: • Reflect in a mirror • Refract through a lens • Diffract passing through a narrow opening
Wave model does not explain all observations • When light strikes a piece of metal, electrons get excited and may fly off the metal’s surface. • Experiments show that not all colors of light can knock the electrons off the metal. • Dim blue light can knock some electrons off • Bright red light cannot knock any electrons off • How can we explain this observation?
Light can modeled as a stream of particles • One explanation to the effects of light striking a metal plate is so assume that the energy of light is contained in small packets. • These packets are called photons • Photons are particles of light • They do not have mass • They are more like little bundles of energy • Unlike energy in a wave, the energy in a photon is located in a particular place
The light model used depends on the situation • Light can be modeled as either waves or particles. • Some effects such as: • Interference of light are explained as waves • Light exciting electrons off a metal plate are explained as particles • The particle model can also explain how light can travel across an empty space without a medium • Light can be considered to have a “dual nature.”
Energy of light is proportional to frequency • Remember light is a form of energy! • Each photon of light carries a small amount of energy. • The amount of this energy is proportional to the frequency of the corresponding wavelength. • Photon of red light carries an amount of energy that corresponds to the frequency of waves in red light (4.5 x 1014 Hz)
Speed of light depends on the medium • In a vacuum, all light travels at the same speed “c” • Speed of light is very large • 3 x 108 m/s (~186,000 mi/s) • It is the fastest signal in the universe • Nothing can travel faster than the speed of light
Speed of light depends on the medium • Light also travels through transparent mediums, such as air, water, and glass • When passing through a medium, it travels slower than it does in a vacuum.
Brightness of light depends on intensity • Intensity is the rate at which light or any other form of energy flows through a given area of space. • It depends on the amount of light or the number of photons or waves • Intensity decreases as the light spreads out in spherical wave fronts.
Sunlight contains UV light • The invisible light just beyond violet light falls into the UV portion of the spectrum. • It has higher energy and shorter wavelengths than visible light. • 9% of energy emitted by the sun is UV • Due to the high energy, it can pass through thin layers of clouds causing you to get a sunburn on overcast days.
X ray and gamma rays used in medicine • X rays have wavelengths less than UV with higher energy • Gamma rays have the highest electromagnetic energy waves with the shortest wavelength • X rays are helpful in diagnostic in medicine but can be dangerous to the body. • Both of these waves can kill living cells or turn them into cancerous cells • Gamma rays can also be used to treat cancer by killing the diseased cells.
Infrared light can be felt as warmth • Infrared (IR) light has wavelengths slightly shorter than red light • IR light from the sun or heat lamp warms you • Used to keep food warm in restaurants without continuing to cook it. • Devices and photographic film are sensitive to IR light • You can detect IR radiation areas of different temperature. Therefore, mapping the area
Microwave for cooking and communication • Microwaves are centimeters longer than IR waves • Microwave are reflected by metals but easily transmitted through air, glass, paper, and plastic • Microwaves are also used to carry telecommunication signals
Radio waves used in communications and radar • Radio waves are longer than microwaves • Radio waves range from 1/10th of a meter to millions of meters • This portion includes TV signals, AM and FM radio signals, and other radio waves