1 / 63

Modélisation de la formation et de l'évolution à long terme des barres sableuses. Mécanismes physiques.

School of Civil Engineering. Modélisation de la formation et de l'évolution à long terme des barres sableuses. Mécanismes physiques. Roland GARNIER et Nick DODD. Séminaire MAMNO, Bordeaux, 11/03/2007. Introduction The Nearshore Zone. Shore. Offshore. Nearshore. Surf. Shoaling. Swash.

burton
Télécharger la présentation

Modélisation de la formation et de l'évolution à long terme des barres sableuses. Mécanismes physiques.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. School of Civil Engineering Modélisation de la formation et de l'évolution à long terme des barres sableuses.Mécanismes physiques. Roland GARNIER et Nick DODD Séminaire MAMNO, Bordeaux, 11/03/2007

  2. IntroductionThe Nearshore Zone Shore Offshore Nearshore Surf Shoaling Swash Shoreline Shoaling Nearshore Surf Swash Offshore Shore

  3. Introduction Open Beaches Longshore Bar Planar Beach Barred Beach • The surf zone of open/large beaches:2 kinds of beach profile • 2D beach configuration: alongshore uniformity • 3D beach configuration: alongshore non-uniformity • Sometimes very chaotic behaviours • But sometimes well organized patterns: Rhythmic Bars

  4. IntroductionTransverse / Oblique Bar Systems l=30 m • Beach Cusps (Biscarosse, France) Bars (Surf Zone) or Cusps (Swash Zone) ?

  5. IntroductionTransverse / Oblique Bar Systems l = 50 m Ambient Current • Up-Current Oblique Bars (Noordwijk, The Netherlands) Ribas and Kroon, J. Geophys. Res., 2007 Argus Images:Surf Zone Patterns

  6. IntroductionCrescentic Bar Systems l=400 m • Crescentic Bars (Duck Beach, USA)

  7. IntroductionLarge Scale Oblique Bar Systems l=400 m • Large Scale (Down-Current) Oblique Bars (SW, France) i.e. `Barres / Baïnes´ www.geoportail.fr Waves

  8. IntroductionHypothesis: Self Organization Mechanism Self-organized behaviour: Morphology result of interaction between hydrodynamics and morphodynamics Complex & Unexpected response of the system External Forcing Waves Forced behaviour: Morphology result of offshore forcing Wave Breaking Currents Sediment Transport Bed Evolution

  9. IntroductionObjectives • Objectives: 1) Modelling / Understanding the emergence of rhythmic features • Transverse / Oblique Bars • Crescentic Bars 2) Modelling / Understanding their long term behaviours • Saturation Mechanisms • Equilibrium • Tool:The MORFO55 Model (2DH processed based model)

  10. The MORFO55 ModelPresentation • 2DH processed based model for the surf zone • Wave- and depth- averaged nonlinear shallow water equations • 6 PDF coupled equations: • water mass • momentum (2) • sediment conservation • wave energy • wave phase • 6 wave-averaged unknowns: • zs(x,y,t): sea level • vi(x,y,t): horizontal velocity (2 components) • zb(x,y,t): bed level • Hrms(x,y,t): wave height • q(x,y,t): wave angle • Background: • MORFO50: Caballeria et al., 2002, J. Fluid Mech. • Formation of transverse and crescentic bars • MORFO55: Garnier et al., 2006, J. Fluid Mech. • Long term behaviour of transverse bars

  11. The MORFO55 ModelGoverning Equations • Hydrodynamics • Mass • Momentum (2) • Wave Energy • Wave Phase

  12. The MORFO55 ModelGoverning Equations Experimentally proved Infragravity waves, Wave bores • Morphodynamics • Sediment conservation sediment transport : stirring factor current bedslope h: bottom perturbation g: parameter u0: orbital velocity

  13. Experiments • Initial topography: Yu & Slinn, 2003, J. Geophys Res. PB: Planar Beach BB: Barred Beach • Sediment transport: SVR or CWS • Incidence of waves: normal (q=0) or oblique (q>0) • 5 illustrative experiments

  14. Basic StatesHydrodynamics PB BB Barred Beach Planar Beach q=20º q=5º

  15. Basic StatesPotential Stirring PB BB Barred Beach Planar Beach Potential Stirring a/D=C Depth Averaged Concentration SVR SVR CWS

  16. Growth Mechanisms The Bottom Evolution Equation (BEE) • The Bottom Evolution Equation (BEE) • Water Conservation • Sediment Conservation Hypothesis BEE Potential StirringDepth Averaged Concentration INSTABILITY DIFFUSION

  17. Growth MechanismsInstability Conditions Potential StirringDepth Averaged Concentration BEE • accretion condition: • erosion condition: • Instability conditions: accretion on shoal erosion in trough

  18. Transverse BarsGrowth Mechanisms C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR

  19. Transverse BarsGrowth Mechanisms shoal trough C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR

  20. Transverse BarsGrowth Mechanisms shoal trough C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR • Instability if

  21. Transverse BarsGrowth Mechanisms C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR • Instability if • Hydrodynamical Response • Difference in Setup • Focus of Energy

  22. Transverse BarsGrowth Mechanisms C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR • Instability if • Hydrodynamical Response • Difference in Setup • Focus of Energy BEDSURF MECHANISM

  23. Transverse BarsGrowth Mechanisms C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR • Instability if • Hydrodynamical Response • Difference in Setup • Focus of Energy • Circulation Cells

  24. Transverse BarsGrowth Mechanisms C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR • Instability if • Hydrodynamical Response BEDSURF MECHANISM Positive Feedback Instabilities can grow

  25. Transverse BarsGrowth Mechanisms C • Normal Waves: BEE x • Planar Beach • Sediment Transport: SVR • Instability if • Hydrodynamical Response BEDSURF MECHANISM Positive Feedback Instabilities can grow • Emergence of off-shore patterns

  26. Transverse BarsModelling

  27. Transverse BarsModelling Vmax = 0.4 m/s

  28. Transverse BarsModelling t = 10 hrs

  29. Oblique Down-Current BarsModelling

  30. Oblique Down-Current BarsModelling Vmax = 1 m/s

  31. Crescentic Bars Growth Mechanisms C • Normal Waves: BEE x • Barred Beach • Sediment Transport: SVR

  32. Crescentic Bars Growth Mechanisms C • Normal Waves: BEE x • Barred Beach • Sediment Transport: SVR • Instability if • Hydrodynamical Response BEDSURF MECHANISM Positive Feedback Instabilities can grow • Emergence of off-shore patterns

  33. Crescentic BarsNormal wave incidence

  34. Crescentic BarsNormal wave incidence Vmax = 0.3 m/s

  35. Crescentic BarsOblique wave incidence

  36. Crescentic BarsOblique wave incidence Vmax = 0.4 m/s

  37. Crescentic BarsOblique wave incidence t1 t2 • l1 = 200 m t = 5 day • l2 = 250 - 300 m • cm = 20 m/day

  38. Oblique Up-Current BarsGrowth Mechanisms: Transverse Bars and CWS ? shoal trough C • Normal Waves: BEE x • Planar Beach • Sediment Transport: CWS

  39. Oblique Up-Current BarsGrowth Mechanisms: Transverse Bars and CWS ? C • Normal Waves: BEE x • Planar Beach • Sediment Transport: CWS • Instability if • Hydrodynamical Response BEDSURF MECHANISM Negative Feedback Instabilities can not grow

  40. Oblique Up-Current BarsGrowth Mechanisms • Oblique Waves: BEE Growth Migration

  41. Oblique Up-Current BarsGrowth Mechanisms shoal trough C • Oblique Waves: BEE x • Planar Beach • Sediment Transport: CWS

  42. Oblique Up-Current BarsGrowth Mechanisms shoal trough C • Oblique Waves: BEE x • Planar Beach • Sediment Transport: CWS • Instability if

  43. Oblique Up-Current BarsGrowth Mechanisms C • Oblique Waves: BEE x • Planar Beach • Sediment Transport: CWS • Instability if • Hydrodynamical Response • BEDSURF MECHANISM NEGATIVE FEEDBACK

  44. Oblique Up-Current BarsGrowth Mechanisms C • Oblique Waves: BEE x • Planar Beach • Sediment Transport: CWS • Instability if • Hydrodynamical Response • BEDSURF MECHANISM NEGATIVE FEEDBACK

  45. Oblique Up-Current BarsGrowth Mechanisms C • Oblique Waves: BEE x • Planar Beach • Sediment Transport: CWS • Instability if • Hydrodynamical Response • BEDSURF MECHANISM NEGATIVE FEEDBACK • BEDFLOW MECHANISM:Deflection of the longshore current

  46. Oblique Up-Current BarsGrowth Mechanisms C • Oblique Waves: BEE x • Planar Beach • Sediment Transport: CWS • Instability if • Hydrodynamical Response • BEDSURF MECHANISM NEGATIVE FEEDBACK • BEDFLOW MECHANISM:Deflection of the longshore current POSITIVE FEEDBACK BEDFLOW > BEDSURF

  47. Oblique Up-Current BarsModelling

  48. Oblique Up-Current BarsModelling • l1 = 50 m t1 = 1 day • l2 = 70 m t2 = 2 day

  49. Saturation MechanismsLocal vs Global Analysis Local Analysis (Analysis “point by point”) • Explains the emergence of bars • Can not easily explain the saturation of their growth: • Still predict erosion/accretion (eg. if bars migrate) • Migration and growth/decay are mixed Global Analysis (Analysis on the whole domain) • Need to define integrated variables (eg. a measure of the amplitude of bars)

  50. Saturation MechanismsGlobal Analysis h bottom perturbation • Water Conservation • Sediment Conservation C depth-averaged concentration • Approximations G diffusivity INSTABILITY DIFFUSION

More Related