1 / 27

Bspline Notes

Bspline Notes. Jordan Smith UC Berkeley CS184. Outline. Bézier Basis Polynomials Linear Quadratic Cubic Uniform Bspline Basis Polynomials Linear Quadratic Cubic Uniform Bsplines from Convolution. Review of B é zier Curves DeCastlejau Algorithm. V 001. V 011. V 111. V 000.

camdyn
Télécharger la présentation

Bspline Notes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bspline Notes Jordan Smith UC Berkeley CS184

  2. Outline • Bézier Basis Polynomials • Linear • Quadratic • Cubic • Uniform Bspline Basis Polynomials • Linear • Quadratic • Cubic • Uniform Bsplines from Convolution

  3. Review of Bézier CurvesDeCastlejau Algorithm V001 V011 V111 V000 Insert at t = ¾

  4. Review of Bézier CurvesDeCastlejau Algorithm 001 011 Insert at t = ¾ 111 000

  5. Review of Bézier CurvesDeCastlejau Algorithm 001 011 0¾1 00¾ ¾11 Insert at t = ¾ 111 000

  6. Review of Bézier CurvesDeCastlejau Algorithm 001 011 0¾1 0¾¾ 00¾ ¾¾1 ¾11 Insert at t = ¾ 111 000

  7. Review of Bézier CurvesDeCastlejau Algorithm 001 011 0¾1 0¾¾ 00¾ ¾¾¾ ¾¾1 ¾11 Insert at t = ¾ 111 000

  8. Review of Bézier CurvesDeCastlejau Algorithm 001 011 0¾1 0¾¾ 00¾ ¾¾¾ ¾¾1 ¾11 Insert at t = ¾ 111 000

  9. Review of Bézier CurvesDeCastlejau Algorithm 001 011 0¾1 0¾¾ 00¾ ¾¾¾ ¾¾1 ¾11 Insert at t = ¾ 111 000

  10. Review of Bézier CurvesDeCastlejau Algorithm 001 011 0¾1 0¾¾ 00¾ ¾¾¾ ¾¾1 ¾11 Insert at t = ¾ 111 000

  11. Bézier Curves Summary • DeCastlejau algorithm • Evaluate Position(t) and Tangent(t) • Subdivides the curve into 2 subcurves with independent control polygons • Subdivision of Bézier curves and convex hull property allows for: • Adaptive rendering based on a flatness criterion • Adaptive collision detection using line segment tests

  12. -1 0 1 2 Linear Bézier Basis Poly’s V0 Vt V1 Vt Bez1(t) = = (1-t) V0 + tV1 1-t t V0 V1 Knots:

  13. Vtt Bez2(t) = = (1-t)2 V00 + 2(1-t)t V01 + t2 V11 V0t Vt1 1-t 1-t 1-t t t t V00 V01 V11 Quadratic Bézier Basis Poly’s V01 Vtt Vt1 V0t V00 V11

  14. -1 0 1 2 Quadratic Bézier Basis Poly’s Bez2(t) = (1-t)2V00 + 2(1-t)tV01 + t2V11 Knots:

  15. Vttt Bez3(t) = V0tt Vtt1 = (1-t)3 V000 + 3(1-t)2t V001 + 3(1-t)t2 V011 + t3 V111 1-t 1-t 1-t 1-t 1-t 1-t t t t t t t V00t V0t1 Vt11 V000 V001 V011 V111 Cubic Bézier Basis Poly’s 0t1 001 011 ttt 0tt tt1 00t t11 000 111

  16. -1 0 1 2 Cubic Bézier Basis Poly’s Bez3(t) = (1-t)3V000 + 3(1-t)2tV001 + 3(1-t)t2V011 + t3V111 Knots:

  17. 234 345 Blossoming ofBsplines 456 123 Knots: 0 1 2 3 4 5 6 7

  18. 234 33.54 345 Blossoming ofBsplines 233.5 3.545 456 123 Knots: 0 1 2 3 3.5 4 5 6 7

  19. 234 33.54 345 Blossoming ofBsplines 33.53.5 3.53.54 233.5 3.545 456 123 Knots: 0 1 2 3 3.5 4 5 6 7

  20. 234 33.54 345 Blossoming ofBsplines 33.53.5 3.53.54 3.53.53.5 233.5 3.545 456 123 Knots: 0 1 2 3 3.5 4 5 6 7

  21. Bspline Blossoming Summary • Blossoming of Bsplines is a generalization of the DeCastlejau algorithm • Control point index triples on the same control line share 2 indices with each other • Inserting a knot (t value) • Adds a new control point and curve segment • Adjusts other control points to form a control polygon • Inserting the same t value reduces the parametric continuity of the curve • A control point triple with all 3 indices equal is a point on the Bspline curve

  22. -1 0 1 2 Uniform Linear Bspline Basis Poly’s V0 Vt V1 Vt B1(t) = = (1-t) V0 + tV1 1-t t V0 V1 Knots:

  23. Vtt V0t Vt1 V-10 V01 V12 Uniform Quadratic Bspline Basis Poly’s V01 V0t Vtt Vt1 V-10 V12 B2(t) =

  24. Uniform Quadratic Bspline Basis Poly’s V-10 V01 V12 Knots: -2 -1 0 1 2 3

  25. 0t1 -101 012 0tt tt1 -10t ttt t12 Vttt -2-10 123 V0tt Vtt1 V-10t V0t1 Vt12 V-2-10 V-101 V012 V123 Uniform Cubic Bspline Basis Poly’s B3(t) =

  26. -3 -2 -1 0 1 2 3 4 Knots: Uniform Cubic Bspline Basis Poly’s V-2-10 V-101 V012 V123

  27. 0 0 1 1 2 2 0 0 0 0 1 1 1 1 0 0 1 1 2 2 3 3 0 1 2 3 4 Uniform Bsplines from Convolution =  =   =

More Related