1 / 39

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές. Ενότητα 8 Τ ΕΛΕΙΑ Γ ΡΑΦΗΜΑΤΑ. Εισαγωγή. Βασικοί Αλγόριθμοι Γραφημάτων Πολυπλοκότητα χώρου και χρόνου: Ο και Ω Τέλεια Γραφήματα Κλάσεις Ιδιότητες Προβλήματα Αλγοριθμικές Τεχνικές …

Télécharger la présentation

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Θεωρία ΓραφημάτωνΘεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 8 ΤΕΛΕΙΑ ΓΡΑΦΗΜΑΤΑ

  2. Εισαγωγή Βασικοί Αλγόριθμοι Γραφημάτων Πολυπλοκότητα χώρου και χρόνου: Ο και Ω Τέλεια Γραφήματα Κλάσεις Ιδιότητες Προβλήματα Αλγοριθμικές Τεχνικές … Αλγόριθμοι Προβλημάτων Αναγνώρισης και Βελτιστοποίησης

  3. Αλγόριθμοι Θεωρίας Γραφημάτων Πολυωνυμικοί Αλγόριθμοι… (Γραμμικοί) Προβλήματα: NP-Πλήρη Επιλογές Προσέγγιση Λύσης Περιορισμοί Ιδιοτήτων Τέλεια Γραφήματα, …

  4. Κλάσεις Τέλειων Γραφημάτων

  5. Κλάσεις Τέλειων Γραφημάτων

  6. Μοντελοποίηση Προβλήματος → → http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

  7. Intersection Graphs • Let F be a family of nonempty sets. • The intersection graph of F is obtained be representing each set in F by a vertex: x y SX ∩ SY ≠ 

  8. Intersection Graphs(Interval) • The intersection graph of a family of intervals on a linearly ordered set (like the real line) is called an interval graph 2 I1 I3 I51 3 I2 I4 I6 6 4 I7 5 • unit internal graph • proper internal graph - no internal property contains another 7

  9. Intersection Graphs(Circular-arc) • Circular-arc graphs properly contain the internal graphs. • proper circular - arc graphs 5 8 6 9 1 4 1 7 3 2

  10. Intersection Graphs (Permutation) • A permutation diagram consists of n points on each of two parallel lines and n straight line segments matching the points. Π= [4,1,3,2] G[Π]

  11. Intersection Graphs (Permutation)

  12. Intersection Graphs (Chords-of-circle) • Intersecting chords of a circle • Proposition. An induced subgraph of an interval graph is an interval graph.

  13. Triangulated Property • Triangulated Graph Property every simple cycle of length l > 3 possesses a chord • Triangulated graphs (or chord graphs)

  14. Transitive Orientation Property • Transitive Orientation PropertyEach edge can be assigned a one-way direction in such a way that the resulting oriented graph (V, F): ab F and bc F  ac  F ( a, b, c V) • Graphs which satisfy the transitive orientation property are called comparability graph.

  15. Transitive Orientation Property • Transitive Orientation Property ab F and bc F  ac  F ( a, b, c V)

  16. Graph Theoretic Foundations (1) • Clique number ω(G)the number of vertices in a maximum clique of G • Stability number α(G) the number of vertices in a stable set of max cardinality Max stable set of G α(G) = 3 Max κλίκα του G ω(G) = 4 a e a b e b  d f c c d f c

  17. Graph Theoretic Foundations (2) • Aclique cover of size k is a partition V = C1+C2+…+Ck such that Ci is a clique. • Aproper coloring of size c (proper c-coloring) is a partition V = X1+X2+…+Xc such that Xi is a stable set.

  18. Graph Theoretic Foundations (3) • Clique cover number κ(G)the size of the smallest possible clique cover of G • Chromatic number χ(G) the smallest possible c for which there exists a proper c-coloring of G. χ(G) = 2κ(G) = 3clique cover V={2,5}+{3,4}+{1}c-coloring V={1,3,5}+{2,4}κ(G)=3 χ(G)=2

  19. Graph Theoretic Foundations (4) • For any graph G: ω(G) ≤ χ(G)α(G) ≤ κ(G) • Obriasly : α(G) = ω(Ğ) and κ(G)= χ(Ğ)

  20. Perfect Graphs -Definition • Let G=(V,E) be an undirected graph: (P1) ω(GA)= χ(GA) A V (P2) α(GA)= κ(GA)  A V G is called Perfect

  21. Perfect Graphs -Properties • χ-Perfect property For each induced subgraph GAof G χ(GA)= ω(GA) • α-Perfect property For each induced subgraph GAof G α(GA)= κ(GA)

  22. Κλάσεις Τέλειων Γραφημάτων

  23. Κλάσεις Τέλειων Γραφημάτων

  24. Triangulated Graphs • G triangulated G has the triangulated graph property Every simple cycle of length l > 3 possesses a chord. • Triangulated graphs, or Chordal graphs, or Perfect Elimination graphs

  25. Triangulated Graphs • Dirac showed that: every chordal graph has a simplicial node, a node all of whose neighbors form a clique. a a, c, f simplicial nodes b, d, e non siplicial e b d f c

  26. Triangulated Graphs • It follows easily from the triangulated property that deleting nodes of a chordal graph yields another chordal graph. a a a e b b b   d d d f f c f c

  27. Triangulated Graphs • Recognition Algorithm This observation leads to the following easy and simple recognition algorithm: • Find a simplicial node of G • Delete it from G, resulting G’ • Recourse on the resulting graph G’, until no node remain

  28. Triangulated Graphs • node-ordering : perfect elimination ordering, or perfect elimination scheme • Rose establishes a connection between chordal graphs and symmetric linear systems. a e b (a, c, b, e, d) (c, d, e, a, b) (c, a, b, d, e) … d c

  29. Triangulated Graphs • Let σ = v1,v2, ...,vnbe an ordering of the vertices of a graph G = (V, E). • σ = peoif each vi is a simplicial node to graph Gvi,vi+1, …,vn a a e e b b σ = (c, d, e, a, b) d d c

  30. Triangulated Graphs • Example: • σ =1, 7, 2, 6, 3, 5, 4 no simplicial vertex • G1 has 96 different peo.

  31. Algorithms for computing peo Algorithm LexBFS 1. forall vV do label(v) :  () ; 2. for i :  V down to 1 do 2.1choose vV with lexmax label (v); 2.1σ (i)  v; 2.3 for all u V ∩N(v) do label (u)  label (u) || i 2.4 V  V \ v; end

  32. Algorithms for Computing PEO

  33. Algorithms for Computing PEO Algorithm MCS 1. for i :  V down to 1 do 1.1 choose vV with max number of numbered neighbours; 1.2 number v by i; 1.3σ (i)  v; 1.4 V  V \ v; end

  34. Algorithms for Computing PEO

  35. Minimum Vertex Separators p q z y x r

  36. Minimum Vertex Separators

  37. Minimum Vertex Separators

  38. Perfect Graphs– Optimization Problems Βασικοί Αλγόριθμοι Γραφημάτων Πολυπλοκότητα χώρου και χρόνου: Ο και Ω Τέλεια Γραφήματα Κλάσεις Ιδιότητες Προβλήματα Τεχνικές Διάσπασης (modular decomposition, …) Αλγόριθμοι Προβλημάτων Αναγνώρισης και Βελτιστοποίησης Triangulated Comparability Interval Permutation Split Cographs Threshold graphs QT graphs … Coloring Max Clique Max Stable Set Clique Cover Matching Hamiltonian Path Hamiltonian Cycle …

  39. Minimum Vertex Separators

More Related