1 / 27

Energie uit water

Energie uit water. KIVI/NIRIA 16 oktober 2006. prof.dr.ir. Cees J.N. Buisman. www.wetsus.nl. www.ete.wur.nl. De wereldcapaciteit wordt overschreden. Bio-energie op dit moment belangrijkste renewable. Source IAE 2003. Biomassa is geen schone brandstof.

cate
Télécharger la présentation

Energie uit water

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energie uit water KIVI/NIRIA 16 oktober 2006 prof.dr.ir. Cees J.N. Buisman www.wetsus.nl 06-0068 www.ete.wur.nl

  2. De wereldcapaciteit wordt overschreden 06-0068

  3. Bio-energie op dit moment belangrijkste renewable Source IAE 2003 06-0068

  4. Biomassa is geen schone brandstof Source: Exploring the future Shell International 06-0068

  5. Bio-energie acetaat ipv suiker Primaire productie Suiker energie Primaire productie Acetaat energie 06-0068

  6. Via acetaat is er veel meer energiepotentieel in biomassa Source SenterNovem 2003 06-0068

  7. Hydrogen : 3 $ct/MJ Ethanol : 3 $ct/MJ Electricty : 2 $ct/MJ Methane : 1 $ct/MJ Schone conversie essentieel WET BIOMASS via acetate 06-0068

  8. Elektriciteitsproductie uit Rioolwater 06-0068

  9. COD • COD = Chemical Oxygen Demand • Used to generalize all dissolved (bio)-oxidizable material in wastewaters. • Value expresses the amount of oxygen needed to completely oxidize the (bio)-oxidizable material. • Represents the amount of potential energy contained in the wastewater.

  10. B I O A NO D E e- e- e- e- e- e- e- Electrochemically Active Micro-organisms Biological Anode Bacteria COD in Wastewater (e.g. fatty acids) Electrons

  11. Bio-electrochemistry Electrochemically Active Micro-organisms Source: http://www.geobacter.org

  12. Nano Wires Source Nature Reviews 2006

  13. Glucose: C6H12O6 + 6 H2O  6 CO2 + 24 H+ + 24 e- Acetic Acid: CH3COOH + 2 H2O  2 CO2 + 8 H+ + 8 e- Sulfur: S0 + 4 H2O SO42- + +8 H+ + 6 e- Etc. These electrons are released at a high energy level! Biological anodes Electron production

  14. Biological Anode: CH3COOH + 2 H2O  2 CO2 + 8 H+ + 8 e- Cathode: 2 O2 + 8 H+ + 8 e-  4 H2O Overall: CH3COOH + 2 O2  2 CO2 + 2 H2O + electricity In theory: ~1 Volt Microbial Fuel Cell Example Acetic Acid

  15. I-0.5 I -0.4 I -0.3 I -0.2 I -0.1 I 0.0 I 0.1 I 0.2 I 0.3 I 0.4 I 0.5 I 0.6 I 0.7 I 0.8 I 0.9 I 1.0 Bio-electricity (+1.02 Volt) O2/H2O (0.82 Volt) Microbial Fuel Cell Energy Consumption Bacteria Energie Opbrengst Bacteriën Energy Consumption Bacteria(= Potential loss) Glucose/CO2 (-0.41 Volt) Acetic Acid/CO2 (-0.27 Volt) Biological Anode Potential(~ -0.2 Volt) Bio-Anode Cathode

  16. Microbial Fuel Cell CO2 Exhaust e- e- Effluent(COD-poor) H2O H2O CO2 + H+ Anode Cathode H+ O2 + H+ COD Wastewater (COD-rich) Air = Electrochemically Active MO

  17. Configurations

  18. Status Power Density: ~100 W/m3 Voltage: 0.2-0.6 Volt Efficiency: 15-30% Performance • Perspectives • Power Density: 1000 W/m3 • Voltage: 0.5-0.7 Volt • Efficiency: ~60% For comparison: conventional anaerobic treatment coupled to agasmotor also produces approximately 1000 W/m3.

  19. Bio electrochemie maakt grote stappen voorwaarts COMMERCIEEL INTERESSANT

  20. The next step SOLAR ENERGY CO2 O2 ASSIMILATES ELECTRICITY MICROBIAL FUEL CELL

  21. Biological Anode: CH3COOH + 2 H2O  2 CO2 + 8 H+ + 8 e- Cathode: 8 H+ + 8 e-  4 H2 Overall: CH3COOH + 2 H2O  2 CO2 + 4 H2 In theory: 0.14-0.22 Volt required In practice: <0.5 Volt required Biocatalysed Electrolysis Example Acetic Acid

  22. I-0.5 I -0.4 I -0.3 I -0.2 I -0.1 I 0.0 H+/H2 (-0.42 Volt) I 0.1 I 0.2 I 0.3 I 0.4 I 0.5 Hydrogen production requires aninput of electricity (-0.22 Volt) I 0.6 I 0.7 I 0.8 I 0.9 I 1.0 Biocatalysed Electrolysis Energy Consumption Bacteria(= Potential loss) Energie Opbrengst Bacteriën Glucose/CO2 (-0.41 Volt) Acetic Acid/CO2 (-0.27 Volt) Biological Anode Potential(~ -0.2 Volt) Bio-Anode Cathode

  23. Biocatalysed Electrolysis CO2 H2 PowerSupply e- e- Effluent(COD-poor) H2 CO2 + H+ H+ Anode Cathode COD H+ Wastewater (COD-rich) = Electrochemically Active MO

  24. Power Supply Electrochemical Cell Configuration

  25. 2 kWh 1.6 m3 H2 Bio-electrochemical System 1 kg COD

  26. 160 MW (1.3 % NL consumption) SewageNL 1.1 billion m3 H2 (19 % car km NL) H2 H2 675 MW (5.4% NL consumption) Manure NL 4.6 billion m3 H2 (79 % car km NL) Bio-electrochemical Processes Electricity and hydrogen from sustainable sources

  27. www.wetsus.nl www.ete.wur.nl 06-0068

More Related