1 / 1

中興大學電機系資訊智慧實驗室

LWE. 的高抗雜訊能力. ZCR, MFCC , time noise. LWE , ZCR. Speech 11kHz. RSONFIN. SVM. SVM-SOFN. To add noise. ILN. To regulate outputs by ROC curve. Frame block. FEC MSC OVER NDS. Speech recognition by HRNFN. 以智慧學習網路執行變動噪音環境下的語音偵測. 研究 生 :鄭 君 楠 指導教授 : 莊家峰. 中興大學電機系資訊智慧實驗室 .

Télécharger la présentation

中興大學電機系資訊智慧實驗室

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LWE 的高抗雜訊能力 ZCR, MFCC , time noise LWE , ZCR Speech 11kHz RSONFIN SVM SVM-SOFN To add noise ILN To regulate outputs by ROC curve Frame block FEC MSC OVER NDS Speech recognition by HRNFN 以智慧學習網路執行變動噪音環境下的語音偵測 研究 生 :鄭 君 楠 指導教授: 莊家峰 中興大學電機系資訊智慧實驗室 本論文提出利用LWE-based參數為基礎的智慧型學習網路偵測器於語音切割。LWE-based參數只需LWE跟ZCR兩參數即可偵測出變動噪音環境下的語音訊號,且擁有不錯的抗雜訊能力。在偵測器部份,我們分別使用了三種網路,遞迴類神經模糊網路(RSONFIN),向量支持機(SVM) ,以向量支持機輔助之自我組織模糊網路(SVM-SOFN) 。結論為所提出的LWE參數有較好的表現。而三個網路的特點分別是: RSONFIN較少的參數量,SVM具有非常容易訓練的特點,SVM-SOFN有較少的參數量及容易訓練的特點。 LWE方程式 語音流程圖 白雜訊的辨識結果 高變化雜訊的切割實例

More Related