1 / 116

Metody opisu dyfuzji wielu składników,

Metody opisu dyfuzji wielu składników, unifikacja metody dyfuzji wzajemnej i termodynamiki procesów nieodwracalnych Marek Danielewski. Interdisciplinary Centre for Materials Modeling AGH Univ. o f Sci. & Technolog y , Cracow, Poland Będlewo, Czerwiec 2013. φ. φ. Quantum mechanics:.

Télécharger la présentation

Metody opisu dyfuzji wielu składników,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Metody opisu dyfuzji wielu składników, unifikacja metody dyfuzji wzajemnej i termodynamiki procesów nieodwracalnych Marek Danielewski Interdisciplinary Centre for Materials Modeling AGH Univ. of Sci. & Technology, Cracow, Poland Będlewo, Czerwiec 2013

  2. φ φ Quantum mechanics:

  3. Quantum mechanics: free particle…

  4. Question: Why Answer… P-K-C hypothesis

  5. Economy… … diffusion equation

  6. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997: "for a new method to determine… the value of derivatives" Myron S. Scholes Long Term Capital Management Greenwich, CT, USA Robert C. Merton Harvard University

  7. But…. money is not conserved!!! Merton & Sholes Nobel price „helped in”… …grand failure in 2008!!! Economy & diffusion…

  8. < 10-35 - ??? Planck scale- 10-35 nucleus - 10-16 atoms - 10-10 biology - 10-4 mechanics - 1, Earth - 107 cosmology – 1027 > 1030 ???

  9. Fundamental !!!

  10. Walther Hermann NERNST 1864-1941 Max PLANCK 1858-1947 Siméon Denis POISSON 1781 -1840 Nernst-Planck-Poisson Problem

  11. Siméon Denis POISSON 1781 -1840 Walther Hermann NERNST 1864-1941 Max PLANCK 1858-1947 Nernst-Planck-Poisson Problem Unsolved: uniqueness, quasi-stationary Problems, multi-component ionic systems… Unsolved: NPP + drift… W. Kucza (2009): converge…

  12. Nernst-Planck:

  13. Fluxis not limited to diffusion…

  14. Bi-velocity: Wagner (1933),Darken (1948), Danielewski & Holly (Cracow >1994)... Show…

  15. ?? R1…. No stress… Ωi =Ω = const.

  16. Material reference frame (Darken: 1948); Lagrange, substantial, material etc…derivative

  17. Internal reference frame (Darken 1948): Lagrange, substantial, material… derivative

  18. local centre of composition:

  19. local centre ofmass:

  20. local volume velocity: None of them!!!

  21. If not: Then?

  22. Vegard law ? EOS ?

  23. We need different approach… Darken!!!

  24. Bi-velocity…

  25. Lattice sites not conserved!

  26. „Zig-zag Road”… to the target

  27. 19th century: Cauchy, Navier, Lamé… Cracow (1994): vd & drift Stephenson (1988):drift &m up to 2007: only m Öttinger (2005): „something is missing” Brenner (2006): Fluid Mechanics Revisited…

  28. Brenner in „Fluid Mechanics Revisited” (Physica A, 2006) 1. Complemented: volume fixed RF 2. Was polite to not notice: conflict between RF’s … in our papers

  29. 150 years of diffusion equation: Diffusion velocity… (~1900 Nernst & Planck) Defects „everywhere & always”… (1918 Frenkel) Nonstoichiometry is a rule… (1933 Schottky & Wagner) Lattice sites are not conserved (1948 Kirkendall & Darken) Darken problem has a unique solution (2008 Holly, Danielewski & Krzyżański) Darken problem is self-consistent with LIT (ActaMat 2010, Danielewski & Wierzba)

  30. 150 years of diffusion: Number of laws decreases… Complexity increases… Do we „stay with”: m, ρυ, q, U only ?

  31. Dynamics & diffusion? Does xmdepend on time, i.e.,xm(t) or xm= const?

  32. Dynamics & diffusion?

  33. … fundamentals only! Hopeless?

  34. Euler’s theorem: f(x1, , xr;…) is called homogeneous of the m-th degree in the variables x1,…, xr if: several identities follow, e.g.:

  35. Volume densities:

  36. From Euler theorem:

  37. The molar volume is the nonconserved property But… is transported bycomponents velocity field.

  38. Fundamentals II The Liouville transport theorem: fi is a sufficiently smooth function(e.g., have first derivative, C1) andυi is defined on fi

  39. Liouville: Conservation of component (fi = ci)

  40. The Liouville theorem & the Volume Continuity, fi(t,x) =„volume density” = ci(t,x) Ωi(t,x)

  41. The volume density conservation law or… equation ofvolume continuity at constant volume:

More Related