1 / 28

Understanding Lines and Graphing Equations | Holt Geometry Lesson

Learn how to graph lines, write equations in slope-intercept and point-slope form, and classify lines as parallel, intersecting, or coinciding in this Holt McDougal Geometry lesson.

cmary
Télécharger la présentation

Understanding Lines and Graphing Equations | Holt Geometry Lesson

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3-6 Lines in the Coordinate Plane Warm Up Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry

  2. Objectives Graph lines and write their equations in slope-intercept and point-slope form. Classify lines as parallel, intersecting, or coinciding.

  3. Vocabulary point-slope form slope-intercept form

  4. Example 1A: Writing Equations In Lines Write the equation of each line in the given form. the line with slope 6 through (3, –4) in point-slope form Point-slope form y – y1 = m(x – x1) y – (–4) = 6(x – 3) Substitute 6 for m, 3 for x1, and -4 for y1.

  5. Example 1B: Writing Equations In Lines Write the equation of each line in the given form. the line through (–1, 0) and (1, 2) in slope-intercept form Find the slope. Slope-intercept form y = mx + b 0 = 1(-1) + b Substitute 1 for m, -1 for x, and 0 for y. 1 = b Write in slope-intercept form using m = 1 and b = 1. y = x + 1

  6. 5 5 Substitute for m, 3 for x1, and 0 for y1. y – 0 = (x – 3) 3 3 5 y = (x - 3) 3 Example 1C: Writing Equations In Lines Write the equation of each line in the given form. the line with the x-intercept 3 and y-intercept –5 in point slope form Use the point (3,-5) to find the slope. y – y1 = m(x – x1) Point-slope form Simplify.

  7. Check It Out! Example 1a Write the equation of each line in the given form. the line with slope 0 through (4, 6) in slope-intercept form Point-slope form y – y1 = m(x – x1) Substitute 0 for m, 4 for x1, and 6 for y1. y – 6 = 0(x – 4) y = 6

  8. Check It Out! Example 1b Write the equation of each line in the given form. the line through (–3, 2) and (1, 2) in point-slope form Find the slope. y – y1 = m(x – x1) Point-slope form Substitute 0 for m, 1 for x1, and 2 for y1. y – 2 = 0(x – 1) y - 2 = 0 Simplify.

  9. The equation is given in the slope-intercept form, with a slope of and a y-intercept of 1. Plot the point (0, 1) and then rise 1 and run 2 to find another point. Draw the line containing the points. run 2 rise 1 (0, 1) Example 2A: Graphing Lines Graph each line.

  10. The equation is given in the point-slope form, with a slope of through the point (–4, 3). Plot the point (–4, 3) and then rise –2 and run 1 to find another point. Draw the line containing the points. rise –2 (–4, 3) run 1 Example 2B: Graphing Lines Graph each line. y – 3 = –2(x + 4)

  11. (0, –3) Example 2C: Graphing Lines Graph each line. y = –3 The equation is given in the form of a horizontal line with a y-intercept of –3. The equation tells you that the y-coordinate of every point on the line is –3. Draw the horizontal line through (0, –3).

  12. The equation is given in the slope-intercept form, with a slope of and a y-intercept of –3. Plot the point (0, –3) and then rise 2 and run 1 to find another point. Draw the line containing the points. run 1 rise 2 (0, –3) Check It Out! Example 2a Graph each line. y = 2x – 3

  13. The equation is given in the point-slope form, with a slope of through the point (–2, 1). Plot the point (–2, 1)and then rise –2 and run 3 to find another point. Draw the line containing the points. rise –2 (–2, 1) run 3 Check It Out! Example 2b Graph each line.

  14. (0, –4) Check It Out! Example 2c Graph each line. y = –4 The equation is given in the form of a horizontal line with a y-intercept of –4. The equation tells you that the y-coordinate of every point on the line is –4. Draw the horizontal line through (0, –4).

  15. Example 3A: Classifying Pairs of Lines Determine whether the lines are parallel, intersect, or coincide. y = 3x + 7, y = –3x – 4 The lines have different slopes, so they intersect.

  16. Both lines have a slope of , and the y-intercepts are different. So the lines are parallel. Example 3B: Classifying Pairs of Lines Determine whether the lines are parallel, intersect, or coincide. Solve the second equation for y to find the slope-intercept form. 6y = –2x + 12

  17. Example 3C: Classifying Pairs of Lines Determine whether the lines are parallel, intersect, or coincide. 2y – 4x = 16, y – 10 = 2(x - 1) Solve both equations for y to find the slope-intercept form. 2y – 4x = 16 y – 10 = 2(x – 1) 2y = 4x + 16 y – 10 = 2x - 2 y = 2x + 8 y = 2x + 8 Both lines have a slope of 2 and a y-intercept of 8, so they coincide.

  18. Check It Out! Example 3 Determine whether the lines 3x + 5y = 2 and 3x + 6 = -5y are parallel, intersect, or coincide. Solve both equations for y to find the slope-intercept form. 3x + 5y = 2 3x + 6 = –5y 5y = –3x + 2 Both lines have the same slopes but different y-intercepts, so the lines are parallel.

  19. Example 4: Problem-Solving Application Erica is trying to decide between two car rental plans. For how many miles will the plans cost the same?

  20. 1 Understand the Problem The answer is the number of miles for which the costs of the two plans would be the same. Plan A costs $100.00 for the initial fee and $0.35 per mile. Plan B costs $85.00 for the initial fee and $0.50 per mile.

  21. Make a Plan 2 Write an equation for each plan, and then graph the equations. The solution is the intersection of the two lines. Find the intersection by solving the system of equations.

  22. 3 Solve 0 = –0.15x + 15 Plan A: y = 0.35x + 100 Plan B: y = 0.50x + 85 Subtract the second equation from the first. x = 100 Solve for x. Substitute 100 for x in the first equation. y = 0.50(100) + 85 = 135

  23. 3 Solve Continued The lines cross at (100, 135). Both plans cost $135 for 100 miles.

  24. Look Back 4 Check your answer for each plan in the original problem. For 100 miles, Plan A costs $100.00 + $0.35(100) = $100 + $35 = $135.00. Plan B costs $85.00 + $0.50(100) = $85 + $50 = $135, so the plans cost the same.

  25. 2. the line through (5, –1) with slope in point-slope form. y + 1= (x – 5) 2 5 Lesson Quiz: Part I Write the equation of each line in the given form. Then graph each line. 1. the line through (-1, 3) and (3, -5) in slope-intercept form. y = –2x + 1

  26. 1 2 Lesson Quiz: Part II Determine whether the lines are parallel, intersect, or coincide. 3. y – 3 = – x, y – 5 = 2(x+ 3) intersect 4.2y = 4x + 12, 4x – 2y = 8 parallel

More Related