1 / 65

Conservation of momentum

Conservation of momentum. Momentum before = momentum after p o = p m a v oa + m b v ob = m a v a + m b v b m a v oa + m b v ob = (m a + m b ) v ab. Conservation of momentum. Momentum before = momentum after p o = p m a v oa + m b v ob = m a v a + m b v b

colette
Télécharger la présentation

Conservation of momentum

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Conservation of momentum • Momentum before = momentum after • po = p • mavoa + mbvob = mava + mbvb • mavoa + mbvob = (ma + mb)vab

  2. Conservation of momentum • Momentum before = momentum after • po = p • mavoa + mbvob = mava + mbvb • mavoa + mbvob = (ma + mb)vab

  3. Conservation of momentum • Momentum before = momentum after • po = p • mavoa + mbvob = mava + mbvb • mavoa + mbvob = (ma + mb)vab

  4. Conservation of momentum • Momentum before = momentum after • po = p • mavoa + mbvob = mava + mbvb • mavoa + mbvob = (ma + mb)vab

  5. Conservation of momentum • Momentum before = momentum after • po = p • mavoa + mbvob= mava + mbvb • mavoa + mbvob = (ma + mb)vab

  6. Conservation of momentum • Momentum before = momentum after • po = p • mavoa + mbvob= mava + mbvb • mavoa + mbvob = (ma + mb)vab

  7. Conservation of momentum • Momentum before = momentum after • po = p • mavoa + mbvob= mava + mbvb • mavoa + mbvob = (ma + mb)vab

  8. 7 Collisions Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collision po = p and KEo=KE for magnetic bumper collisions mbc voc + mrc vorc = mbc vbc + mrc vrc ½ mbc voc2 + ½ mrc vorc2 = ½ mbc vbc2 + ½ mrc vrc2 Elastic Collisions

  9. 7 Collisions Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collision po = p and KEo=KE for magnetic bumper collisions mbc voc + mrc vorc = mbc vbc + mrc vrc ½ mbc voc2 + ½ mrc vorc2 = ½ mbc vbc2 + ½ mrc vrc2 Elastic Collisions

  10. 7 Collisions Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collision po = p and KEo=KE for magnetic bumper collisions mbc voc + mrc vorc = mbc vbc + mrc vrc ½ mbc voc2 + ½ mrc vorc2 = ½ mbc vbc2 + ½ mrc vrc2 Elastic Collisions

  11. 7 Collisions Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collision po = p and KEo=KE for magnetic bumper collisions mbc voc + mrc vorc = mbc vbc + mrc vrc ½ mbc voc2 + ½ mrc vorc2 = ½ mbc vbc2 + ½ mrc vrc2 Elastic Collisions

  12. 7 Collisions Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collision po = p and KEo=KE for magnetic bumper collisions mbc voc + mrc vorc = mbc vbc + mrc vrc ½ mbc voc2 + ½ mrc vorc2 = ½ mbc vbc2 + ½ mrc vrc2 Elastic Collisions

  13. 7 Collisions Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collision po = p and KEo=KE for magnetic bumper collisions mbc voc + mrc vorc = mbc vbc + mrc vrc ½ mbc voc2 + ½ mrc vorc2 = ½ mbc vbc2 + ½ mrc vrc2 Elastic Collisions

  14. 7 Collision Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collisions po = p and KEo=KE for velcro collision mbc voc + mrc vorc = ( mbc + mrc ) vbrc ½ mbc voc2 + ½ mrc vorc2 > ½ (mbc + mrc)vrc2 Inelastic Collisions

  15. 7 Collision Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collisions po = p and KEo=KE for velcro collision mbc voc + mrc vorc = ( mbc + mrc ) vbrc ½ mbc voc2 + ½ mrc vorc2 > ½ (mbc + mrc)vrc2 Inelastic Collisions

  16. 7 Collision Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collisions po = p andKEo=KE for velcro collision mbc voc + mrc vorc = ( mbc + mrc ) vbrc ½ mbc voc2 + ½ mrc vorc2 > ½ (mbc + mrc)vrc2 Inelastic Collisions

  17. 7 Collision Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collisions po = p andKEo=KE for velcro collision mbc voc + mrc vorc = ( mbc + mrc ) vbrc ½ mbc voc2 + ½ mrc vorc2 > ½ (mbc + mrc)vrc2 Inelastic Collisions

  18. 7 Collision Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collisions po = p andKEo=KE for velcro collision mbc voc + mrc vorc = ( mbc + mrc ) vbrc ½ mbc voc2 + ½ mrc vorc2 > ½ (mbc + mrc)vrc2 Inelastic Collisions

  19. 7 Collision Lab • 7 collisions – inelastic and elastic collisions Blue cart red cart collisions po = p andKEo=KE for velcro collision mbc voc + mrc vorc = ( mbc + mrc ) vbrc ½ mbc voc2 + ½ mrc vorc2 > ½ (mbc + mrc)vrc2 Inelastic Collisions

  20. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  21. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  22. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  23. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  24. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  25. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  26. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  27. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  28. Ballistic Pendulum • Momentum • p before = p after • mb vob = ( mb + mp ) vbp • vob = ( mb + mp ) vbp • mb • Kinetic Energy = Gravitational Potential • ½ (mb + mp) vbp2 = (mb + mp ) gh • ½ vbp2 = gh • vbp2 = 2gh • vbp = 2gh • Therefore vob = (mb+mp) 2gh • mb

  29. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  30. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  31. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  32. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  33. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  34. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  35. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  36. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  37. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  38. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  39. Ballistic Sled • Momentum • p before = p after • mb vob = ( mb + ms ) vbs • vob = ( mb + ms ) vbs • mb • Kinetic Energy = Work done against friction • ½ (mb + ms) vbs2 = Wfr • ½ (mb + ms) vbs2 = Ffr d • ½ (mb + ms) vbs2 = mFN d • ½ (mb + ms) vbs2 = m(mb + ms) gd • ½ vbs2 = mgd • Vbs = 2 mgd Therefore vob = (mb+ms) 2mgd • mb

  40. Off Center Collision Overall momentum before = overall momentum after Horizontal momentum before = Horizontal momentum after Vertical momentum before = vertical momentum after p0 = p pox = px poy = py mwb vowbx + mbb vobbx = mwb vwbx + mbb vbbx mwb vowby + mbb vobby = mwb vwby + mbb vbby

  41. Off Center Collision Overall momentum before = overall momentum after Horizontal momentum before = Horizontal momentum after Vertical momentum before = vertical momentum after p0 = p pox = px poy = py mwb vowbx + mbb vobbx = mwb vwbx + mbb vbbx mwb vowby + mbb vobby = mwb vwby + mbb vbby

  42. Off Center Collision Overall momentum before = overall momentum after Horizontal momentum before = Horizontal momentum after Vertical momentum before = vertical momentum after p0 = p pox = px poy = py mwb vowbx + mbb vobbx = mwb vwbx + mbb vbbx mwb vowby + mbb vobby = mwb vwby + mbb vbby

  43. Off Center Collision Overall momentum before = overall momentum after Horizontal momentum before = Horizontal momentum after Vertical momentum before = vertical momentum after p0 = p pox = px poy = py mwb vowbx + mbb vobbx = mwb vwbx + mbb vbbx mwb vowby + mbb vobby = mwb vwby + mbb vbby

  44. Off Center Collision Overall momentum before = overall momentum after Horizontal momentum before = Horizontal momentum after Vertical momentum before = vertical momentum after p0 = p pox = px poy = py mwb vowbx + mbb vobbx = mwb vwbx + mbb vbbx mwb vowby + mbb vobby = mwb vwby + mbb vbby

  45. Off Center Collision Overall momentum before = overall momentum after Horizontal momentum before = Horizontal momentum after Vertical momentum before = vertical momentum after p0 = p pox = px poy = py mwb vowbx + mbb vobbx = mwb vwbx + mbb vbbx mwb vowby + mbb vobby = mwb vwby + mbb vbby

  46. Off Center Collision Overall momentum before = overall momentum after Horizontal momentum before = Horizontal momentum after Vertical momentum before = vertical momentum after p0 = p pox = px poy = py mwb vowbx + mbb vobbx = mwb vwbx + mbb vbbx mwb vowby + mbb vobby = mwb vwby + mbb vbby

  47. Collision and Impulse

  48. Collision and Impulse F

  49. Collision and Impulse F t

  50. Collision and Impulse Impulse = ½ b h = ½ t F F t

More Related