1 / 66

RHIC physics and AdS/CFT

RHIC physics and AdS/CFT. Amos Yarom, Munich. together with: S. Gubser and S. Pufu. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A A. g YM. 1. ~ 170 MeV. Energy. Overview. The quark gluon plasma. ?. AdS/CFT. J. Maldacena.

Télécharger la présentation

RHIC physics and AdS/CFT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RHIC physics and AdS/CFT Amos Yarom, Munich together with: S. Gubser and S. Pufu TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAAA

  2. gYM 1 ~170 MeV Energy Overview • The quark gluon plasma ?

  3. AdS/CFT J. Maldacena Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT

  4. Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT ?

  5. Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT • Energy loss of a moving quark

  6. Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT • Energy loss of a moving quark

  7. Overview • The quark gluon plasma • N=4 SYM plasma via AdS/CFT • Energy loss of a moving quark • Summary

  8. H E A V Y I O N R E L A T I V I S T I C C O L L I D E R The quark gluon plasma at RHIC

  9. pT Jet quenching 197 ×

  10. Jet quenching (Phenix, 2005)

  11. Friction coefficient for QCD plasma

  12. AdS5 CFT AdS/CFT J. Maldacena N=4 SYM plasma via AdS/CFT Vacuum Empty AdS5 gYM2 N L4/’2 L3/2 G5 N2 J. Maldacena hep-th/9711200

  13. AdS5 CFT T>0 N=4 SYM plasma via AdS/CFT Empty AdS5 Thermal state Vacuum AdS5 BH gYM2 N L4/’2 L3/2 G5 N2 Horizon radius Temperature J. Maldacena hep-th/9711200 E. Witten hep-th/9802150

  14. 0 x1 xi, t AdS5 CFT Thermal state AdS5 BH gYM2 N L4/’2 z0 1/ T z0 L3/2 G5 N2 z Horizon radius Temperature E. Witten hep-th/9802150 AdS Black holes

  15. AdS5 CFT z0 AdS/CFT J. Maldacena Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) 0 ? Massive parton Endpoints of an open string J. Maldacena hep-th/9803002 z

  16. AdS5 CFT z0 Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) 0 ? Massive parton Endpoints of an open string J. Maldacena hep-th/9803002 z

  17. F F z0 Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) 0 z

  18. AdS/CFT J. Maldacena Friction coefficient (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006)

  19. Measurables which have been compared • Friction coefficient • Energy density • Shear viscosity • Jet quenching parameter (Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006, Teaney Cassalderrey-Solana, 2006) (Gubser, Klebanov, Peet, 1996) (Policastro, Son, Starinets, 2001) (Liu, Rajagopal, Wiedemann, 2006)

  20. Measuring jets

  21.  Measuring jets

  22. =p Measuring di-jets

  23. (STAR, 0701069) Measuring di-jets

  24. (STAR, 0701069) Measuring di-jets =

  25. (STAR, 0701069) Measuring di-jets »-1

  26. Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)

  27. Creation of sound waves (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006)

  28. Mach cones and di-jets (Casalderrey-Solana, Shuryak, Teaney, 2004, 2006) »-1

  29. AdS5 CFT z0 Mach cones in N=4 SYM 0 z

  30. 0 AdS5 CFT z0 z Metric fluctuations AdS black hole The energy momentum tensor Gmn(z,k)

  31. z0 The energy momentum tensor 0 z

  32. The energy momentum tensor Cylindrical symmetry Gauge choice Vector modes Tensor modes

  33. The energy momentum tensor Tensor modes Vector modes + first order constraint

  34. The energy momentum tensor Tensor modes Vector modes Scalar modes + first order constraint + 3 first order constraints

  35. Energy density for v=3/4 Over energy Under energy

  36. v=0.75 v=0.58 v=0.25

  37. Small momentum approximations 1-3v2 > 0 (subsonic)

  38. X1 > 0 Im(K1) Re(K1) v increases v decreases X1 < 0 Small momentum approximations 1-3v2 > 0 (subsonic)

  39. X1 > 0 Im(K1) Re(K1) v increases X1 < 0 X1 Small momentum approximations 1-3v2 < 0 (supersonic) 1-3v2 = 0 ? ?

  40. Small momentum approximations 1-3v2 < 0 (supersonic) 1-3v2 > 0 (subsonic)

  41. Small momentum approximations

  42. Im(K1) Re(K1) Small momentum approximations s=1/3 cs2=1/3

  43. Multi-scale analysis Large distances – linear hydrodynamic picture valid Intermediate distances – nonlinear hydrodynamics Short momenta – Strong dissipative effects

  44. Energy density for v=3/4

  45. 0

  46. v=0.75 v=0.58 v=0.25

  47. Large momentum approximations

  48. Large momentum approximations

  49. Large momentum approximations

  50. Large momentum approximations

More Related