160 likes | 286 Vues
The Unisol Technology presents an innovative approach to chromatography using silica-based columns with enhanced surface properties like low-acidity silanol enrichment. It offers versatile columns such as Unisol C18 and Venusil ASB-C18, suitable for a wide range of applications from HILIC to high-temperature analyses. With improved LC-MS sensitivity and recovery rates, these columns ensure outstanding performance for both basic and polar compounds. This technology addresses common challenges in analytical chemistry, providing stability, reliability, and superior results in LC-MS workflows.
E N D
Unisol Technology • Surface Deactivation and Silanol Enrichment: SiO2---OH Si(OMe)4 SiO2---O-Si(OMe)3 Hydrolysis R-Si(Me)2-X SiO2-O-SiOSi(Me)2R SiO2---O-Si(OH)3
Results from the Unisol Process • Metal on silica surface----covered by fresh silanol of low acidity • High acidity of silanols caused by high temperature sintering---- covered by fresh silanol of low acidity • Surface irregularity caused by formation of micro-crystalline domains on surface ---- more uniform surface
Products from Unisol Technologies • Unisol C18: true versatile RP columns to cover the broadest range of applications; the most friendly towards basic or acid compounds; high Aq compatible • Venusil ASB C18: ASB-C8: extremely low bleed and high sensitivity for MS; extremely low pH and high temperature tolerance (pH=0.8, Temp=100oC); high Aq compatible • Unisol Amide: the highest retention for hydrophilic compounds in HILIC mode; more stable and reproducible than silica or amino columns • Durashell RP: the broadest pH range (1-12); symmetric peaks for acidic, basic and neutral compounds
Venusil ASB-C18 • Very polar C18 • pH range 0.8-7.0 (extremely stable at pH=1, up to 100oC) • Non-endcapped C18, • 150 A, 200 m2/g(compared to Zorbax 80A, 180m2/g) • Silanol pH=5.2(compared to Zorbax pH=3.5) • Compatible to 100% water(compared to Zobax SB, non-compatible) • Highest LC-MS Sensitivity : 2-3 times higher than many popular brands (low bleed, inert surface and high efficiency)
Peak Shape of Basic Compounds C18 (non-endcapped, twin-layer Brand A C18( non-endcapped, ) Test conditions: Column dimension: 4.6 mm x 150mm Sample: doxepin, nortriptyline, trimipramine amitriptyline Mobile phase: Acetonitrile/0.01M sodium phosphate (pH=5) = 70/30 Temperature: 30 oC Flow: 1 mL/min Detection: UV 254 nm
Sensitivity Comparison for LC-MS 2.5 ng/mL Pseudoephedrine Best S/N: X2-3 sensitivity comparing to other columns • Agela Venusil ASB C18, 2.1×50mm, 5µm • Aglent Zorbax XDB C18, 2.1×50mm, 5µm • Phenomenex Luna C18, 2.0×50mm, 5µm
Results Obtained Under Same LC-MS Conditions 0.01 ng/mL Pseudoephedrine Best S/N: X2-3 sensitivity comparing to other columns • Agela Venusil ASB C18, 2.1×50mm, 5µm • Aglent Zorbax XDB C18, 2.1×50mm, 5µm • Phenomenex Luna C18, 2.0×50mm, 5µm
Quantitative Analysis of oleic acid and Its Metabolite Using SPE and LC-MS
Existing Issue Protein precipitation has low recovery: ~ 10% Poor linearity in the experimental range Oleic acid I.S. I.S. metabolite Oleic Acid Venusil ASB C18 4.6mm×150mm
Sample Preparation Two: 1 mL PEP SPE Columns Condition 1 mL Methanol Equilibration 1mL Water Load 500uL Sample Wash 1 1mL 1% formic acid Elute 1 mL 1% formic acid in ACN LC-MS Added 3% Phosphoric acid to break the protein-drug binding Still non-ideal recovery for Oleic Acid
Optimization of the Elution Solvents Recovery of compounds in Plasma The ACN:MeOH=70:30 solvent mixture gives the best recoveries for both oleic acid and its metabolite DHSA. Strong Interaction of the molecules with the SPE sorbent requires stronger elution solvent. Test concentration: 100ng/mL n = 12
Establishing a High Efficient, High Recovery SPE Method and a Fast, Sensitive HPLC-MS/MS Method SPE and 2.1 x 50 mm HPLC Columns
Establish a Fast LC-MS/MS Quantitation Method Using Agela Venusil ASB C18 Column, 2.1mm×50mm, 5 um • Instrument: • API Qtrap 3200, Applied Biosystem • LC-20AHPLC, Shimazu • MS Conditions: • ESI, Positive ion mode, MRM • m/z 166.0 m/z 148.1(Pseudoephedrine) • m/z 235.3 m/z 86.1(internal standard: Lidocaine) Pseudoephedrine 0.7mL/min 伪麻黄碱 • HPCL Conditions • Column: 2.1 x 50 mm, 5 um, ASB C18 • A: 0.1% Formic acid • B: Methanol • Flow rate: 0.5 mL/min • Gradient: 20%-95% B in 2 min5%,hold at 95%B for 2.5min,decrease to 20% B at 3 min, and hold for 0.5 min. Total analysis time 3.5 minutes. Lidocaine Internal Standard 0.7mL/min 利多卡因
Consider to Use PEP SPE Columns 1mg PEP Condition 1 mL Methanol Add 3% Phosphoric Acid to Break Compound/Plasma protein binding Equilibration 1mL Water Load 500uL Sample Wash 1 1mL 1% formic acid Elute 1 mL 1% formic acid in ACN LC-MS Std curve of wei ma huang jian in plasma
Recovery of the Plasma Samples Using 1 mL PEP SPE Columns Ideal recoveries are obtained using PEP SPE columns