880 likes | 1.62k Vues
Molecular diagnosis of heterogeneous genetic diseases: the example of muscular dystrophies. Vincenzo Nigro Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli. Telethon Institute of Genetics and Medicine (TIGEM). What is a mutation?. A variation of the DNA sequence
E N D
Molecular diagnosis of heterogeneous genetic diseases: the example of muscular dystrophies Vincenzo Nigro Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli Telethon Institute of Genetics and Medicine (TIGEM)
What is a mutation? A variation of the DNA sequence • that is only found in affected individuals • that is never found in non affected individuals • that accounts for the pathological process/status • that, when corrected in time, disease is rescued
..that is only found in affected and that is never found in non affected incomplete penetrance that is more often found in affected than in non affected...
CCCCAGCCTCCTTGCCAACGCCCCCTTTCCCTCTCCCCCTCCCGCTCGGCGCTGACCCCCCATCCCCACCCCCGTGGGAACACTGGGAGCCTGCACTCCACAGACCCTCTCCTTGCCTCTTCCCTCACCTCAGCCTCCGCTCCCCGCCCTCTTCCCGGCCCAGGGCGCCGGCCCACCCTTCCCTCCGCCGCCCCCCGGCCGCGGGGAGGACATGGCCGCGCACAGGCCGGTGGAATGGGTCCAGGCCGTGGTCAGCCGCTTCGACGAGCAGCTTCCAATAAAAACAGGACAGCAGAACACACATACCAAAGTCAGTACTGAGCACAACAAGGAATGTCTAATCAATATTTCCAAATACAAGTTTTCTTTGGTTATAAGCGGCCTCACTACTATTTTAAAGAATGTTAACAATATGAGAATATTTGGAGAAGCTGCTGAAAAAAATTTATATCTCTCTCAGTTGATTATATTGGATACACTGGAAAAATGTCTTGCTGGGCAACCAAAGGACACAATGAGATTAGATGAAACGATGCTGGTCAAACAGTTGCTGCCAGAAATCTGCCATTTTCTTCACACCTGTCGTGAAGGAAACCAGCATGCAGCTGAACTTCGGAATTCTGCCTCTGGGGTTTTATTTTCTCTCAGCTGCAACAACTTCAATGCAGTCTTTAGTCGCATTTCTACCAGGTTACAGGAATTAACTGTTTGTTCAGAAGACAATGTTGATGTTCATGATATAGAATTGTTACAGTATATCAATGTGGATTGTGCAAAATTAAAACGACTCCTGAAGGAAACAGCATTTAAATTTAAAGCCCTAAAGAAGGTTGCGCAGTTAGCAGTTATAAATAGCCTGGAAAAGGCATTTTGGAACTGGGTAGAAAATTATCCAGATGAATTTACAAAACTGTACCAGATCCCACAGACTGATATGGCTGAATGTGCAGAAAAGCTATTTGACTTGGTGGATGGTTTTGCTGAAAGCACCAAACGTAAAGCAGCAGTTTGGCCACTACAAATCATTCTCCTTATCTTGTGTCCAGAAATAATCCAGGATATATCCAAAGACGTGGTTGATGAAAACAACATGAATAAGAAGTTATTTCTGGACAGTCTACGAAAAGCTCTTGCTGGCCATGGAGGAAGTAGGCAGCTGACAGAAAGTGCTGCAATTGCCTGTGTCAAACTGTGTAAAGCAAGTACTTACATCAATTGGGAAGATAACTCTGTCATTTTCCTACTTGTTCAGTCCATGGTGGTTGATCTTAAGAACCTGCTTTTTAATCCAAGTAAGCCATTCTCAAGAGGCAGTCAGCCTGCAGATGTGGATCTAATGATTGACTGCCTTGTTTCTTGCTTTCGTATAAGCCCTCACAACAACCAACACTTTAAGATCTGCCTGGCTCAGAATTCACCTTCTACATTTCACTATGTGCTGGTAAATTCACTCCATCGAATCATCACCAATTCCGCATTGGATTGGTGGCCTAAGATTGATGCTGTGTATTGTCACTCGGTTGAACTTCGAAATATGTTTGGTGAAACACTTCATAAAGCAGTGCAAGGTTGTGGAGCACACCCAGCAATACGAATGGCACCGAGTCTTACATTTAAAGAAAAAGTAACAAGCCTTAAATTTAAAGAAAAACCTACAGACCTGGAGACAAGAAGCTATAAGTATCTTCTCTTGTCCATGGTGAAACTAATTCATGCAGATCCAAAGCTCTTGCTTTGTAATCCAAGAAAACAGGGGCCCGAAACCCAAGGCAGTACAGCAGAATTAATTACAGGGCTCGTCCAACTGGTCCCTCAGTCACACATGCCAGAGATTGCTCAGGAAGCAATGGAGGCTCTGCTGGTTCTTCATCAGTTAGATAGCATTGATTTGTGGAATCCTGATGCTCCTGTAGAAACATTTTGGGAGATTAGCTCACAAATGCTTTTTTACATCTGCAAGAAATTAACTAGTCATCAAATGCTTAGTAGCACAGAAATTCTCAAGTGGTTGCGGGAAATATTGATCTGCAGGAATAAATTTCTTCTTAAAAATAAGCAGGCAGATAGAAGTTCCTGTCACTTTCCCCCAGCCTCCTTGCCAACGCCCCCTTTCCCTCTCCCCCTCCCGCTCGGCGCTGACCCCCCATCCCCACCCCCGTGGGAACACTGGGAGCCTGCACTCCACAGACCCTCTCCTTGCCTCTTCCCTCACCTCAGCCTCCGCTCCCCGCCCTCTTCCCGGCCCAGGGCGCCGGCCCACCCTTCCCTCCGCCGCCCCCCGGCCGCGGGGAGGACATGGCCGCGCACAGGCCGGTGGAATGGGTCCAGGCCGTGGTCAGCCGCTTCGACGAGCAGCTTCCAATAAAAACAGGACAGCAGAACACACATACCAAAGTCAGTACTGAGCACAACAAGGAATGTCTAATCAATATTTCCAAATACAAGTTTTCTTTGGTTATAAGCGGCCTCACTACTATTTTAAAGAATGTTAACAATATGAGAATATTTGGAGAAGCTGCTGAAAAAAATTTATATCTCTCTCAGTTGATTATATTGGATACACTGGAAAAATGTCTTGCTGGGCAACCAAAGGACACAATGAGATTAGATGAAACGATGCTGGTCAAACAGTTGCTGCCAGAAATCTGCCATTTTCTTCACACCTGTCGTGAAGGAAACCAGCATGCAGCTGAACTTCGGAATTCTGCCTCTGGGGTTTTATTTTCTCTCAGCTGCAACAACTTCAATGCAGTCTTTAGTCGCATTTCTACCAGGTTACAGGAATTAACTGTTTGTTCAGAAGACAATGTTGATGTTCATGATATAGAATTGTTACAGTATATCAATGTGGATTGTGCAAAATTAAAACGACTCCTGAAGGAAACAGCATTTAAATTTAAAGCCCTAAAGAAGGTTGCGCAGTTAGCAGTTATAAATAGCCTGGAAAAGGCATTTTGGAACTGGGTAGAAAATTATCCAGATGAATTTACAAAACTGTACCAGATCCCACAGACTGATATGGCTGAATGTGCAGAAAAGCTATTTGACTTGGTGGATGGTTTTGCTGAAAGCACCAAACGTAAAGCAGCAGTTTGGCCACTACAAATCATTCTCCTTATCTTGTGTCCAGAAATAATCCAGGATATATCCAAAGACGTGGTTGATGAAAACAACATGAATAAGAAGTTATTTCTGGACAGTCTACGAAAAGCTCTTGCTGGCCATGGAGGAAGTAGGCAGCTGACAGAAAGTGCTGCAATTGCCTGTGTCAAACTGTGTAAAGCAAGTACTTACATCAATTGGGAAGATAACTCTGTCATTTTCCTACTTGTTCAGTCCATGGTGGTTGATCTTAAGAACCTGCTTTTTAATCCAAGTAAGCCATTCTCAAGAGGCAGTCAGCCTGCAGATGTGGATCTAATGATTGACTGCCTTGTTTCTTGCTTTCGTATAAGCCCTCACAACAACCAACACTTTAAGATCTGCCTGGCTCAGAATTCACCTTCTACATTTCACTATGTGCTGGTAAATTCACTCCATCGAATCATCACCAATTCCGCATTGGATTGGTGGCCTAAGATTGATGCTGTGTATTGTCACTCGGTTGAACTTCGAAATATGTTTGGTGAAACACTTCATAAAGCAGTGCAAGGTTGTGGAGCACACCCAGCAATACGAATGGCACCGAGTCTTACATTTAAAGAAAAAGTAACAAGCCTTAAATTTAAAGAAAAACCTACAGACCTGGAGACAAGAAGCTATAAGTATCTTCTCTTGTCCATGGTGAAACTAATTCATGCAGATCCAAAGCTCTTGCTTTGTAATCCAAGAAAACAGGGGCCCGAAACCCAAGGCAGTACAGCAGAATTAATTACAGGGCTCGTCCAACTGGTCCCTCAGTCACACATGCCAGAGATTGCTCAGGAAGCAATGGAGGCTCTGCTGGTTCTTCATCAGTTAGATAGCATTGATTTGTGGAATCCTGATGCTCCTGTAGAAACATTTTGGGAGATTAGCTCACAAATGCTTTTTTACATCTGCAAGAAATTAACTAGTCATCAAATGCTTAGTAGCACAGAAATTCTCAAGTGGTTGCGGGAAATATTGATCTGCAGGAATAAATTTCTTCTTAAAAATAAGCAGGCAGATAGAAGTTCCTGTCACTTTC CCCCAGCCTCCTTGCCAACGCCCCCTTTCCCTCTCCCCCTCCCGCTCGGCGCTGACCCCCCATCCCCACCCCCGTGGGAACACTGGGAGCCTGCACTCCACAGACCCTCTCCTTGCCTCTTCCCTCACCTCAGCCTCCGCTCCCCGCCCTCTTCCCGGCCCAGGGCGCCGGCCCACCCTTCCCTCCGCCGCCCCCCGGCCGCGGGGAGGACATGGCCGCGCACAGGCCGGTGGAATGGGTCCAGGCCGTGGTCAGCCGCTTCGACGAGCAGCTTCCAATAAAAACAGGACAGCAGAACACACATACCAAAGTCAGTACTGAGCACAACAAGGAATGTCTAATCAATATTTCCAAATACAAGTTTTCTTTGGTTATAAGCGGCCTCACTACTATTTTAAAGAATGTTAACTATATGAGAATATTTGGAGAAGCTGCTGAAAAAAATTTATATCTCTCTCAGTTGATTATATTGGATACACTGGAAAAATGTCTTGCTGGGCAACCAAAGGACACAATGAGATTAGATGAAACGATGCTGGTCAAACAGTTGCTGCCAGAAATCTGCCATTTTCTTCACACCTGTCGTGAAGGAAACCAGCATGCAGCTGAACTTCGGAATTCTGCCTCTGGGGTTTTATTTTCTCTCAGCTGCAACAACTTCAATGCAGTCTTTAGTCGCATTTCTACCAGGTTACAGGAATTAACTGTTTGTTCAGAAGACAATGTTGATGTTCATGATATAGAATTGTTACAGTATATCAATGTGGATTGTGCAAAATTAAAACGACTCCTGAAGGAAACAGCATTTAAATTTAAAGCCCTAAAGAAGGTTGCGCAGTTAGCAGTTATAAATAGCCTGGAAAAGGCATTTTGGAACTGGGTAGAAAATTATCCAGATGAATTTACAAAACTGTACCAGATCCCACAGACTGATATGGCTGAATGTGCAGAAAAGCTATTTGACTTGGTGGATGGTTTTGCTGAAAGCACCAAACGTAAAGCAGCAGTTTGGCCACTACAAATCATTCTCCTTATCTTGTGTCCAGAAATAATCCAGGATATATCCAAAGACGTGGTTGATGAAAACAACATGAATAAGAAGTTATTTCTGGACAGTCTACGAAAAGCTCTTGCTGGCCATGGAGGAAGTAGGCAGCTGACAGAAAGTGCTGCAATTGCCTGTGTCAAACTGTGTAAAGCAAGTACTTACATCAATTGGGAAGATAACTCTGTCATTTTCCTACTTGTTCAGTCCATGGTGGTTGATCTTAAGAACCTGCTTTTTAATCCAAGTAAGCCATTCTCAAGAGGCAGTCAGCCTGCAGATGTGGATCTAATGATTGACTGCCTTGTTTCTTGCTTTCGTATAAGCCCTCACAACAACCAACACTTTAAGATCTGCCTGGCTCAGAATTCACCTTCTACATTTCACTATGTGCTGGTAAATTCACTCCATCGAATCATCACCAATTCCGCATTGGATTGGTGGCCTAAGATTGATGCTGTGTATTGTCACTCGGTTGAACTTCGAAATATGTTTGGTGAAACACTTCATAAAGCAGTGCAAGGTTGTGGAGCACACCCAGCAATACGAATGGCACCGAGTCTTACATTTAAAGAAAAAGTAACAAGCCTTAAATTTAAAGAAAAACCTACAGACCTGGAGACAAGAAGCTATAAGTATCTTCTCTTGTCCATGGTGAAACTAATTCATGCAGCTCCAAAGCTCTTGCTTTGTAATCCAAGAAAACAGGGGCCCGAAACCCAAGGCAGTACAGCAGAATTAATTACAGGGCTCGTCCAACTGGTCCCTCAGTCACACATGCCAGAGATTGCTCAGGAAGCAATGGAGGCTCTGCTGGTTCTTCATCAGTTAGATAGCATTGATTTGTGGAATCCTGATGCTCCTGTAGAAACATTTTGGGAGATTAGCTCACAAATGCTTTTTTACATCTGCAAGAAATTAACTAGTCATCAAATGCTTAGTAGCACAGAAATTCTCAAGTGGTTGCGGGAAATATTGATCTGCAGGAATAAATTTCTTCTTAAAAATAAGCAGGCAGATAGAAGTTCCTGTCACTTTC 50.000 private variants = innocuous differences belonging to one family
1-allele diseases • monoallelic mutations may be responsible for dominant or X-linked disorders • new random mutations are the rule with an unpredictable pattern of distribution
Gender effect in mutations • For mutations other than point mutations, sex biases in the mutation rate are very variable • Small deletions are more frequent in females • Germline base substitution mutations occur more frequently in males than in females, especially in older males • Point mutations at some loci occur almost exclusively in males, whereas others occur ten times more than in females
Relative frequency of de novo achondroplasia for different paternal ages
Relative frequency of de novo neurofibromatosis for different paternal ages
2-allele diseases • novel mutations are rare, usually mutations have a long history (100-1000 generations) • mutations have an ethnical signature with a predictable pattern of distribution and frequency • biallelic mutations may be responsible for autosomal recessive disorders • polymorphisms and private variants are more easily discriminated vs true mutations
2-allele diseases • consanguineity is a risk factor for homozygosity • high carrier frequency is a risk factor for compound heterozygosity
The effect of an allele • null or amorph = no product • hypomorph = reduced amount / activity • hypermorph = increased amount / activity • neomorph = novel product / activity • antimorph = antagonistic product / activity
Loss of function mutations in the PAX3 gene (Waardenburg syndrome)haploinsufficiency
amorph / hypomorph (1) • deletion • the entire gene • part of the gene • disruption of the gene structure • by insertion, inversion, translocation • promoter inactivation • mRNA destabilization • splicing mutation • inactivating donor/acceptor • activating criptic splice sites
amorph / hypomorph (2) • frame-shift in translation • by insertion of n+1 or n+2 bases into the coding sequence • by deletion of n+1 or n+2 bases into the coding sequence • nonsense mutation • missense mutation / aa deletion • essential / conserved amino acid • defect in post-transcriptional processing • defect in cellular localization
hypermorph • trisomia • duplication • amplification (cancer) • chromatin derepression (FSH) • trasposition under a strong promoter • leukemia • overactivity of an abnormal protein
neomorph • generation of chimeric proteins • duplication • amplification (cancer) • missense mutations • inclusion of coding cryptic exons • usage of alternative ORFs • overactivity of an abnormal protein
antimorph • missense mutations • inclusion of coding cryptic exons • usage of alternative ORFs
Mutation detection • mutation scanning • or resequencing methods for identifying previously unknown mutations • genotyping • methods for scoring previously known mutations or single nucleotide polymorphisms (SNPs)
Key questions for mutation detection strategy • expected mutations are monoallelic or biallelic? • is the gene well recognized for that disease? • is the mutation pattern known? (deletion, dup, small mutations, etc.) • which is the complexity of the gene? • how many patients must be examined? • how many controls should be examined? • how many mutations and how many variations have already been identified in this gene? • are there more members of the same gene family (or pseudogenes) in the genome?
Dimension of the mutation detection study Number of patients Gene size X Number of controls
mutations are identified? NO YES General strategy for mutation detection frequent mutations are known? screening of recurrent mutations mutation scanning NO YES SEQUENCING
DMD Duchenne Muscular Dystrophy - 1/3,500 boysOnset -- Early childhood - about 2 to 6 years • Laboratory -- CK (50x to 1.000x), LDH5, ALT, AST, aldolase increase Symptoms -- Generalized weakness and muscle wasting affecting proximal limb muscles first. Calves often enlarged. Heart involvementProgression -- Disease progresses slowly but will affect all voluntary muscles. Survival possible beyond late twenties • BMD Becker Muscular Dystrophy - 1/10,000 boysOnset -- Adolescence or adulthoodSymptoms -- Almost identical to Duchenne but often much less severe. Heart involvementProgression -- Slower and more variable than DMD with survival well into mid to late adulthood
Telethon-UILDM 250/300 DMD/BMD Qualitative test rejected Quantitative test more DNA 80plex-PCR Point mutations Deletions duplications mRNA study Family tests
Log-PCR = 4 multiplex-PCR (2x20+2x18) with uniform spacing and gel position according to chromosomal position DMD patient : groups A, B BMD patient : groups C, D Deletion ex 17-43 Duplication ex 13-23 C D A B DMD BMD 1: del ex 43 2: del ex 11, 17, 19, 21 3: del ex 17, 19, 21 4: del ex 50, 52 5: del ex 7, 11, 17, 19 6: del ex 61 1: no del 2: del ex 8, 12, 18, 20, 22 3: del ex 12, 18, 20, 22 4: del ex 46, 51 5: del ex 6, 8, 12, 18 6: del ex 62 1 2 3 4 5 6
Hybridysation • The MLPA probemix is added to denatured genomic DNA • The two parts of each probe hybridise to adjacent target sequences
Ligation 3. Probes are ligated by a thermostable ligase
PCR amplification • A universal primer pair is used to amplify all ligated probes The PCR product of each probe has a unique length (130 480 bp)
Separation and quantification by capillary electrophoresis Each peak is the amplification product of a specific probe. Samples are compared to a control sample. A difference in relative peak height or peak area indicates a copy number change of the probe target sequence
Male Female Triple X 283 bp 346 bp Detection of Chr X copy number X
MLPA discriminates sequences that differ in only a single nucleotide and can be used to detect known mutations. Mismatch Perfect match Mismatch at the probe ligation site No ligation, no amplification product Ligation of the two probe oligonucleotides Amplification product
M M Methylated Target Unmethylated Target Denaturation and Multiplex probe hybridization Ligation and Digestion with methylation sensitive endonucleases M M MS-MLPA Only undigested (methylated) and ligated probes are exponentially amplified
Limb-girdle weakness proximal weakness: most common • Lower extremities • difficulty climbing stairs • arising from a low chair or toilet • getting up from a squatted position • Upper extremities • trouble lifting objects over their head • brushing their hair • distal weakness • difficulty opening jars, inability to turn a key in the ignition, or tripping due to foot drop • cranial weakness • dysarthria, dysphagia or ptosis