1 / 91


Nanotoxicológia. Fodor Bertalan Miskolci Egyetem, Egészségügyi Kar Nanobiotechnológiai és Regeneratív Medicina Tsz. Key challenges in medicine. Translating breakthroughs in understanding disease into preventive medicine How to increase productivity dramatically

Télécharger la présentation


An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.


Presentation Transcript

  1. Nanotoxicológia Fodor Bertalan Miskolci Egyetem, Egészségügyi Kar Nanobiotechnológiai és Regeneratív Medicina Tsz.

  2. Key challenges in medicine • Translating breakthroughs in understanding disease into preventive medicine • How to increase productivity dramatically • How to align reimbursement with better outcome and efficiency • How to reap the benefits of healthcare while reducing the inefficiencies Paul Smit, Philips: ETP Nanomedicine 2007

  3. The Progression of Medicine Conventional “Modern” Medicine “Personalized” or “Molecular” Medicine Nanomedicine Single-cell Medicine

  4. Definition of nanomedicine • Applying of nanotechnology in the theoretical and practical medical sciences: • in diagnosis • in treatment • in prevention • in disease control • in medical researches • Investigation and/or treating of life processes and diseases with nanoscale (10-9- 10-6 m) devices/drugs

  5. Why does nanomedicine represent a huge promise for healthcare?Earlier diagnosis increases chances of survival. By the time some symptoms are evident to either the doctor or the patient, it may be already too late. • Conventional medicine is reactive to tissue-level problems that are happening at the symptomatic level. Nanomedicine will proactively diagnose and treat problems at the molecular level inside single-cells, prior to traditional symptoms, and hopefully prior to irreversible tissue and organ damage. • Conventional medicine is not readily available to much of humanity because it is labor-intensive and that labor is sophisticated and expensive. Nanomedicine will be much more preventive, comparatively inexpensive because it will minimize use of expensive human experts, and can be more readily mass produced and distributed.

  6. Trends in the nanomedical research • Main targets: cardiovascular-, infectious diseases, cancer, diabetes, musculo-sceletal-, mental illness • Early and accurate diagnosis – Nanodiagnostics -biosensors, nanoscale devices • Targeted drug delivery – transfer the drug only to the diseased tissue site and monitor its impact • Regenerative medicine – intelligent biomaterials, targeted cell implantation, polymers with programmable conformation, etc. • Ethical, Legal, Social, Toxicological, etc.?

  7. Ray Bawa: Nanotechnology patent proliferation and the crisis at the U.S. patent office Albany Law Journal of Science and Technology 17 (3), 699-736, 2007 USA nanotechnologypatents Total number of patents

  8. Supported EU FP7 topics

  9. MICRO- AND NANOSCALE COMPARISON CHART • ~ 0.5-0.8 mm (10-4 m): Coverslip for microscopic slides • ~ 50-200 μm: Human hair • ~ 20-50 μm: Many primary and cultured cells • ~ 7 μm: Human red blood cells • ~ 1 μm=1000 nm (10-6 m): Bacteria • ~ 100 nm: Viruses • ~ 25 nm: Microtubule width • ~ 15 nm: Antibodies (IgG) • ~ 1-20nm: Most proteins • ~ 10 nm (10-8 m): Intermediate Filaments (Vimentin) • ~ 5 nm: Microfilament width (Actin) • ~ 2-4 nm: Ribosome • ~ 2.4 nm: DNA width • ~ 1.2 nm: Amino acid (tryptophane) • ~ 1 nm: Aspirin molecule • ~ 1 nm -100 nm : Nanoparticles • ~ 0.2 nm: Individual atom 1 nm=10 Å Yuri Volkov, PhD, MD

  10. Nano-periodic system Tomalia, 2009 J. Nanoparticle Research

  11. Nano-periodic system Tomalia, 2009 J. Nanoparticle Research

  12. Interactions Between Technologies for Development of Nanomedical Systems • Nanoparticle fabrication and quality control labs • Nanochemistry • Dynamic Light scattering sizing • Zeta Potential • Atomic Force Microscopy • Cell and intracellular targeting labs • Flow cytometry • Imaging (laser opto-injection and ablation) cytometry • Confocal (one- and multi-photon analysis) • Transient Gene Therapy (“gene drugs”) • Construction of therapeutic genes for specific biomedical applications • Animal testing/comparative medicine • Human clinical trials • Nanomaterials biocompatibility labs • Microscopy/image analysis/LEAP • Gene expression microarray analyses • Biosensor Labs • Biosensor molecular biology • Results evaluated in targeting labs

  13. Carbon nanotubes • Allotropesof carbon • A single-walled carbon nanotube (SWNT) is a one-atom thick sheet of graphite (called graphene) rolled up into a seamless cylinder with diameter on the order of a nanometer. • Length-to-diameter ratio exceeds 1,000,000. • Extraordinary strength

  14. Intracellular targeting of nucleus Cell biology of nanomaterials can reveal previously unknown cellular mechanisms and responses. On the right, multiwalled carbon nanotubes (MWNT-NH3 – blue arrow) penetrating a human cell line (HeLa) imaged by TEM. On the right, confocal laser scanning microscopy of single-walled carbon nanotubes (SWNT-NH3) trafficking to the perinuclear region of epithelial lung carcinoma cells (adapted from Refs. Pantarotto, et al. Angew.Chem.Int.Ed. 2004, 43, 5242-5246; and Kostarelos, K. et al. Nature Nanotech. 2007, 2, 108-113 respectively).

  15. Kidney function assay Chemically functionalised carbon nanotube body elimination through the renal route. The left image is a microSPECT image of an animal injected with radiolabelled f-CNT (red signal), indicating translocation to the kidneys within minutes. On the right handside, the two top images show single-walled carbon nanotubes (SWNT) and the rest of the images multi-walled carbon nanotubes as imaged by TEM from urine samples (Singh et al, PNAS, 2006).

  16. CAGED ATOMS. A water-soluble contrast agent being developed for magnetic resonance imaging encapsulates two gadolinium metal atoms (purple) and one scandium metal atom (green) that are attached to a central nitrogen atom (blue). The molecule's tail (gray and red) makes the cage water-soluble. Water molecules (red and yellow Vs) surround the molecule.

  17. Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Concept: Smart Nanomedicine Systems with Control of Gene/Drug Delivery within Single Cells Cell targeting and entry Intracellular targeting Therapeutic genes Magnetic or Qdot core (for MRI or optical imaging) Biomolecular sensors (for error-checking and/or gene switch) Targeting molecules (e.g. an antibody, an DNA, RNA or peptide sequence, a ligand, a thioaptamer), in proper combinations for more precise nanoparticle delivery Leary and Prow, PCT (USA and Europe) Patent pending 2005

  18. The Multi-Step Targeting Process in Nanomedical Systems

  19. SPIO MRI Agents • SuperParamagnetic Iron • Oxide (SPIO) Nanoparticle • Magnetic Core • Biocompatible Shell • Targeting Ligand Core Ligand Shell • Why? • Enhanced sensitivity (SNR) • Contrast Control (T1 & T2) • Targeting Capability • Improved Biocompatibility • Acceptable Toxicity • How? • Control Size • Control Composition • Control Shell Chemistry Next Gen Molecular Imaging Agents

  20. Magnetic Nanoparticles for MRI Monodisperse Core Biocompatible Shell • Magnetic Core • Biocompatible Shell • Targeting Ligands Targeting Capability

  21. Quantum dot • Quantum dot is a semiconductor whose excitons are confined in all three spatial dimensons. As a result, they have properties that are between those of bulk semiconductors and those of discrete molecules. Colloidal quantum dots irradiated with a UV light, different sized quantum dots emit different color light due to quantum confinement

  22. Quantum Dot Applications in Cancer Management Quantum dots Protein binding & internalization Laboratory diagnostics Quantum dot labelling of mouse colon cancer Sentinel node visualization for breast cancer through 1 cm of tissue

  23. Nanocell drug delivery • Targeting molecules on nanocell attach to or enter cancer cells • Nanocell releases chemotherapy drugs and imaging particles into the cells from its core. • The drugs attack the tumour while the imaging particles help monitor tumour death

  24. 10-6 Visible Spectrum 10-7 100 nm 10-8 10-9 1 (nm) 0.1 nm 10-10 Drug delivery systems, nanocarriers liposome Szén nanocső micell dendrimers carbon nanotubes fullerens quantum dot 30

  25. Use of liposomes in pharmacotherapy • Localized and rate controlled delivery • Improved therapeutic response • Achieve appropriate tissue or blood levels • Reduced adverse reactions • Less drug administered • Targeted drug release • Lower dosing frequency • Improved patient compliance • Simpler dosing regimens • Lower cost per dose • Utilization of otherwise un-useable compounds

  26. Liposomal drugs in the market and under development

  27. Liposomal Targeting • Passive • a process by which the physical propertiesof the liposomes combined with the microanatomy of the vasculatureat the target tissue determine drug selective localization (EPR effect). • Active • requiresa homing device (antibody, receptor ligand, etc.) as part of the liposomesurface so that the liposomes can recognize the ‘‘sick’’ cells, bind to themselectively, and either be internalized by these cells or be broken down byeither enzymatic hydrolysis or processes such as ultrasonic irradiation torelease the drug near the cell surface so it will be taken up by the target cells

  28. Types of hypersensitvity reactions to nanomedicines • Acute • Anaphylactic –toid reactions • idiosyncratic • pseudoallergic • infusion reactions • C activation-related pseudoallergy (CARPA) • Late (chronic) • late pseudoallergic reactions

  29. APT070 39

  30. 2004 Donaldson és mtsai: • Nanométeres részecskék viselkedése alapvetően eltér a nagyobbaktól • Nanotoxicológia

  31. CNT, egyéb C alapú nanorészecskék • 1991 óta 21.236 cikk CNT (2007) • 100 cikk/hét (2006) • Gyártott CNT mennyisége • 100 tonna 2004-ben • 294 tonna 2005-ben • 2400 tonna 2010-ben (becsült adatok) • Keleti és Ázsiai piacok • Korea vezető

  32. MWCNT falak között kb. 0.34 nm távolság • DWCNT – külső funkcionalizálható, belső intakt (mint az SWCNT) • A CNT vége lehet zárt, vagy nyitott. Ha zárt, különböző rácsszerkezetű lehet – toxicitás • A CNT erősen hajlamos az aggregációra • Erősen insolubilis • Kémiai anyagokkal szemben ellenálló • A levegőben 500 C-on ég

  33. Szintézisének 3 lehetséges módja • Leggyakoribb: chemical vapor deposition (CVD) • Elv: C tartalmú fragmentek képzése, feloldás – tube képződés - általában valamilyen fém katalízissel, magas hőmérsékleten (500–1200 ° C). • Lehet katalízis nélkül is, de a hatékonysága alacsony, SWCNT kevés képződik így • 3 kulcs összetevő: • szénforrás (metán, metanol, acetilén, benzén, CO) • katalizátor (felszíni: SiO2, por: MgO, zeolit, aluminium származékok, szilikát, vagy levegőben • nincs katalizátor: HiPCO – nagy nyomású CO • Minden tényező hatással lehet a CNT toxicitására, nemcsak maga a CNT szerkezet!!

More Related