1 / 14

Texas Lutheran University Department of Physics Seguin, TX 78155

Two-Dimensional Kinematics. Bulldog Physics. Texas Lutheran University Department of Physics Seguin, TX 78155. Projectile Motion. What is the acceleration in the x -direction?. What does this mean about the velocity in the x -direction?. What is a Projectile?.

daire
Télécharger la présentation

Texas Lutheran University Department of Physics Seguin, TX 78155

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two-Dimensional Kinematics Bulldog Physics Texas Lutheran University Department of Physics Seguin, TX 78155

  2. Projectile Motion What is the acceleration in the x-direction? What does this mean about the velocity in the x-direction? What is a Projectile? Projectile motion is a example of 2D Motion What is the acceleration of an object while it’s flying through the air? Any object that flies through the air. An object flying through the air moves in both the x and y directions. Typically, the motion in each component is uncoupled. The motion in each component is independent of the other. Acceleration due to gravity! It is ZERO!!! It is constant. Texas Lutheran University Department of Physics Seguin, TX 78155

  3. Conceptual Question 1 A blue ball is being held above ground a distance y. A red ball is thrown from the same height, y, at a horizontal velocity of v0. The blue ball is released at the same instant the red ball leaves the table. Which ball reaches the ground first? y 1) The blue ball lands first. 2) The red ball lands first. 3) They land simultaneously. 4) There is not enough information. Texas Lutheran University Department of Physics Seguin, TX 78155

  4. Conceptual Question 1 A blue ball is being held above ground a distance y. A red ball is thrown from the same height, y, at a horizontal velocity of v0. The blue ball is released at the same instant the red ball leaves the table. Which ball reaches the ground first? y 1) The blue ball lands first. 2) The red ball lands first. 3) They land simultaneously. 4) There is not enough information. Texas Lutheran University Department of Physics Seguin, TX 78155

  5. A Ball in the Air We can separate the motion in the x and y directions. We also can talk about the time in the air. What is the velocity at max height? x-direction y-direction Now we use the kinematics equations using only one column at a time to solve our problems. This must be the same for both directions! So t can go in both columns. , so vx is constant. So only vy is zero at the maximum height. Texas Lutheran University Department of Physics Seguin, TX 78155

  6. Example Problem 1 Long TD Pass video Texas Lutheran University Department of Physics Seguin, TX 78155

  7. Example Problem 1 Play “Long TD Pass” • A quarterback throws a football at 45 mph (20.1 m/s) at 35 degrees with the horizontal to get the ball over the linemen. Assume the ball is caught at the same height it is thrown. • How long is the ball in the air? • How far away can the receiver be and catch the ball? • What is the maximum height of the ball while in the air? Texas Lutheran University Department of Physics Seguin, TX 78155

  8. A Ball in the Air (Horizontal Velocity Case) We still have the same basic columns. We now have a change in height, so Dy is no longer zero. Our initial velocity is now completely in the x-direction. x-direction y-direction Again, we’re now set up to solve problems using the kinematics equations using one column at a time. Texas Lutheran University Department of Physics Seguin, TX 78155

  9. Example Problem 2 A thirdbaseman catches a ground ball and throws to the firstbaseman, who is 38.0 meters away. The thirdbaseman throws the ball horiztonally at height of 1.83 meters off the ground. What is the minimum speed the thirdbaseman can throw the ball without the ball hitting the ground before reaching the firstbaseman? Texas Lutheran University Department of Physics Seguin, TX 78155

  10. A Ball in the Air (Angle and Height) We still have the same basic columns. When this situation arises, we almost always get a quadratic equation when analyzing the y-direction. x-direction y-direction How do we solve this? Texas Lutheran University Department of Physics Seguin, TX 78155

  11. The Quadratic Equation We use an algebra trick: For the situation at hand, we have If we have an equation of the form: Then the solution is: So we get The plus and minus give you up to two possible solutions. This means there are two times where you reach the specified height. Texas Lutheran University Department of Physics Seguin, TX 78155

  12. Example Problem 3 • A golfer tees off on a par 3 course. The she lofts the ball at a 44 degree angle from the horizontal, sending it off at 24 m/s. The hole is positioned 50 feet (15.2 meters) below the tee. The ball lands right into the hole! • What is the horizontal distance between the tee and the hole? • How fast the ball traveling just before it lands in the hole? Texas Lutheran University Department of Physics Seguin, TX 78155

  13. Conceptual Question 2 A quarterback throws two passes, one to Receiver A and the second to Receiver B. The trajectories are shown. Which pass takes more time to get to the receiver? 1) The pass to Receiver A. 2) The pass to Receiver B. 3) Both passes spend the same time in the air. 4) There is not enough information. Texas Lutheran University Department of Physics Seguin, TX 78155

  14. Conceptual Question 2 A quarterback throws two passes, one to Receiver A and the second to Receiver B. The trajectories are shown. Which pass takes more time to get to the receiver? 1) The pass to Receiver A. 2) The pass to Receiver B. 3) Both passes spend the same time in the air. 4) There is not enough information. Receiver A Receiver B Texas Lutheran University Department of Physics Seguin, TX 78155

More Related