220 likes | 326 Vues
This presentation explores the fundamental methods of proving triangle congruence, focusing on SSS (Side-Side-Side), SAS (Side-Angle-Side), ASA (Angle-Side-Angle), and AAS (Angle-Angle-Side). Through a series of examples, we illustrate how two triangles can be shown to be congruent when corresponding sides and angles meet specific conditions. Learn how to apply these methods effectively in geometry to demonstrate the congruence of triangle pairs based on given side lengths and angle measures.
E N D
Proving Triangles Congruent Geometry Ch 04 A BowerPoint Presentation
SSS (Side-Side-Side) If AB XY & BC YZ & AC XZ Then ABC XYZ
SSS (Side-Side-Side) If AB XY & BC YZ & AC XZ Then ABC XYZ
SSS (Side-Side-Side) If AB XY & BC YZ & AC XZ Then ABC XYZ
SSS (Side-Side-Side) If AB XY & BC YZ & AC XZ Then ABC XYZ
SSS (Side-Side-Side) If AB XY & BC YZ & AC XZ Then ABC XYZ
SAS (Side-Angle-Side) If AB XY & A X & AC XZ Then ABC XYZ
SAS (Side-Angle-Side) If AB XY & A X & AC XZ Then ABC XYZ
SAS (Side-Angle-Side) If AB XY & A X & AC XZ Then ABC XYZ
SAS (Side-Angle-Side) If AB XY & A X & AC XZ Then ABC XYZ
SAS (Side-Angle-Side) The angles must be included between the two pairs of sides
ASA (Angle-Side-Angle) If A X & AB XY & B Y Then ABC XYZ
ASA (Angle-Side-Angle) If A X & AB XY & B Y Then ABC XYZ
ASA (Angle-Side-Angle) If A X & AB XY & B Y Then ABC XYZ
ASA (Angle-Side-Angle) If A X & AB XY & B Y Then ABC XYZ
ASA (Angle-Side-Angle) The sides must be included between the two pairs of angles
AAS (Angle-Angle-Side) If A X & B Y & AC XZ Then ABC XYZ
AAS (Angle-Angle-Side) If A X & B Y & AC XZ Then ABC XYZ
AAS (Angle-Angle-Side) If A X & B Y & AC XZ Then ABC XYZ
AAS (Angle-Angle-Side) If A X & B Y & AC XZ Then ABC XYZ
AAS (Angle-Angle-Side) The sides are not included between the two pairs of angles
Proving Triangles Congruent • SSS • Side-Side-Side • SAS • Side-Angle-Side • ASA • Angle-Side-Angle • AAS • Angle-Angle-Side