1 / 33

CSIS 4823 Data Communications Networking - Networking Review

CSIS 4823 Data Communications Networking - Networking Review. Mr. Mark Welton. What is a Network?.

daphne
Télécharger la présentation

CSIS 4823 Data Communications Networking - Networking Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CSIS 4823Data Communications Networking - Networking Review Mr. Mark Welton

  2. What is a Network?

  3. A computer network, or simply a network, is a collection of computers and other hardware interconnected by communication channels that allow sharing of resources and information. Where at least one process in one device is able to send/receive data to/from at least one process residing in a remote device, then the two devices are said to be in a network. A network is a group of devices connected to each other. Networks may be classified into a wide variety of characteristics, such as the medium used to transport the data, communications protocol used, scale, topology, benefit, and organizational scope. - Wikipedia

  4. A computer network can be defined as two or more computers connected by some means through which they are capable of sharing information • So is sneaker net a network?

  5. Network Have Connections • A connection involves some sort of addressing or identification of the nodes on the network, allowing them to speak the same protocol or language.

  6. What is in a name? • Types of networks: • LAN - is a network that is confined to a limited space, such as a building or floor. • WAN - A WAN is a network that is used to connect LANs by way of a third-party provider. • CAN - is a network that connects LANs and/or buildings in a discrete area owned • or controlled by a single entity. • MAN - is a network that connects LANs and/or buildings in an area that is often • larger than a campus.

  7. What is in a name? • We also describe networks by the technology they use • Ethernet • Token Ring • FDDI (Fiber Distributed Data Interface) • Or the Protocols: • ATM • Frame Relay • MPLS • T1 • DS3 • Or the layer: • Bridged • Routed • Point-to-point

  8. Early Networks • Early Ethernet, 10Base-5 used a thick cable named thick-net • 10Base-2 Ethernet replaced 10Base-5 and used a smaller coaxial cable named thin-net • Both used either an N or BNC connector to couple cables together and required terminators to be installed at the end of a cable run • These cable runs formed the physical backbone of Ethernet networks

  9. Early Networks • Ethernet running over UTP cables terminated with RJ45 connectors made use of hubs • Hubs became the new backbone of many installations • As hubs became less expensive, extra hubs were often used a repeaters in more complex networks • Hubs are layer one devices (physical/electrical devices) and do not alter frames or make decisions on traffic it sees

  10. Hubs and Repeaters • A hub is simply a means of connecting Ethernet cables together so that their signals can be repeated to every other connected cable on the hub • Hubs may also be called repeaters for this reason, but it is important to understand that while a hub is a repeater, a repeater is not necessarily a hub.

  11. Collision • If another device is already using the wire, the sending device will wait a bit and then try to transmit again • When two stations transmit at the same time, a collision occurs • Each station records the collision, backs off again, and then retransmits • A collision domain is an area • of an Ethernet network where collisions can occur

  12. Broadcast Domain • A broadcast domain is the area of an Ethernet network where a broadcast will be propagated • Broadcasts stay within a Layer-3 network (unless forwarded), which is usually bordered by a Layer-3 device such as a router • A broadcast storm results in the attempt to build redundancy into the network • The only way to resolve a broadcast storm is to break the loop

  13. Broadcast Storm

  14. 5-4-3 Rule • The 5-4-3 rule of Ethernet design states that between any two nodes on an Ethernet network, there can be only five segments, connected via four repeaters, and only three of the segments can be populated. This rule, which seems odd in the context of today’s networks, was the source of much pain for those who didn’t understand it.

  15. 5-4-3 Rule

  16. Switches • Switches differ from hubs by playing an active role in the processing of frames on the network • Switch - The general term used for anything that can switch • Ethernet Switch - Any device that forwards frames based on their Layer-2 MAC addresses using Ethernet • A switch creates a collision domain on each port, while a hub’s collision domain exists on all ports

  17. Switches • Layer-3 Switch - This is a switch with routing capabilities • Multilayer Switch - Similar to a Layer-3 switch, but may also allow for control based on higher layers in packets. Multilayer switches allow for control based on TCP, UDP, and even details contained within the data payload of a packet • Switching - is the act of forwarding frames based on their destination MAC addresses

  18. Every frame contains the source and destination MAC address • switch inspects the frame to determine the source MAC address and adds the address into its address table • The switch then determines the frame’s destination MAC address and checks the table • If a match exists, the frame is forwarded from the source port to the destination port. If no match is found, the frame is sent to all ports

  19. Routing • Routing - refers to determining the path for something • For IP, packets and frames are forwarded by switches and hubs • To reach a destination, not on the local network, the packet must be forwarded to a gateway • The gateway (router) is responsible for determining how to get the packet to where it needs to go

  20. Routing • Routers communicate with each other by routing protocols • These protocols let the routers learn information about other networks which are stored in the routing table of the router • With the introduction of layer three switches – routers tend to remain WAN-focused, while switches remain LAN-focused

  21. Routing • Routing is a fundamental process common to almost every network • Each routing protocol has its own table of information (learned through its own protocol – in addition to the routing table of the router) • Metrics - the values or weight used by a routing protocol to determine its best path to a destination • Administrative distance is the values assigned to each routing protocol by the router in order to prioritize learned routes

  22. Routing • If the same route is learned from two sources within a single routing protocol, the one with the best metric will win • If the same route be learned from two routing protocols within a single router, the protocol with the lowest administrative distance will be preferred

  23. Routing • When a packet arrives at a router, the router determines whether the packet needs to be forwarded to another network • If it does, the router checks the routing table to determine if it contains a route to the destination network • If there is a match, the packet is forwarded out the proper interface to where it belongs • If there is no match found in the routing table, the packet is forwarded to the default gateway, if one exists, or dropped if no default gateway exists

  24. Routing • IP destination networks are often described by a network address and prefix length • The prefix length is the number of bits set to 1 in the subnet mask • Networks are described in the format network-address/prefix-length • i.e. 10.0.0.0/16 • referred to as a prefix

  25. 10.0.0.0/24 • 10.0.0.0/16 • 10.0.0.0/8 • Which has the longer prefix? • A longer prefix means a more specific match to a destination

  26. Types of Routes • Host route • subnet route • summary route • major network route • supernet route • default route

  27. Host Route • Host route is a route to a host (node), not a network • Host routes have a subnet mask of 255.255.255.255 or a /32 prefix • The subnet mask is all 1s

  28. Subnet Route • Subnet route is a portion of a major network • The subnet mask is used to determine the network • 24 is a subnet of the classful 10.0.0.0 network • Subnets make use of Variable Length Subnet Masks of classful major networks

  29. Summary Route • Summary route is a single route that references a group of subnets • 10.1.0.0/16 would be a summary route for the subnet routes of 10.1.1.0/24 and 10.1.2.0/24

  30. Major Route • is any classful network with its traditional subnet mask • Class A, B, C networks

  31. Supernet route • Supernet route is a single route that references a group of major network • 192.168.0.0.0/15 is a supernet for 192.168.0.0.0/16 and 192.169.0.0/16

  32. Default Route • Default route is the gateway (route) of last resort • typically shown as 0.0.0.0 (an all zero) destination • The subnet mask is all zeroes

More Related