210 likes | 373 Vues
University of Belgrade School of Electrical Engineering Chair of Computer Engineering and Information Theory. Data Mining and Semantic Web. Neural Networks: Backpropagation algorithm. Miroslav Ti šma tisma.etf @gmail.com. But the camera sees this:. What is this?. You see this: .
E N D
University of Belgrade School of Electrical Engineering Chair of Computer Engineering and Information Theory Data Mining and Semantic Web Neural Networks: Backpropagation algorithm Miroslav Tišma tisma.etf@gmail.com
But the camera sees this: What is this? You see this: 23.12.2011. Miroslav Tišma 2/21
Computer Vision: Car detection Not a car Cars Testing: What is this? 23.12.2011. Miroslav Tišma 3/21
pixel 1 Learning Algorithm pixel 2 50 x 50 pixel images→ 2500 pixels (7500 if RGB) Raw image pixel 2 Cars pixel 1 intensity “Non”-Cars pixel 2 intensity pixel 2500 intensity Quadratic features ( ): ≈3 million features pixel 1 23.12.2011. Miroslav Tišma 4/21
Neural Networks • Origins: Algorithms that try to mimic the brain • Was very widely used in 80s and early 90s; popularity diminished in late 90s. • Recent resurgence: State-of-the-art technique • for many applications 23.12.2011. Miroslav Tišma 5/21
Neurons in the brain Dendr(I)tes Ax(O)n 23.12.2011. Miroslav Tišma 6/21
Neuron model: Logistic unit “bias unit” “output” “weights” - parameters “input wires” Sigmoid (logistic) activation function. 23.12.2011. Miroslav Tišma 7/21
Neural Network “bias unit” Layer 1 Layer 2 Layer 3 “output layer” “input layer” “hidden layer” 23.12.2011. Miroslav Tišma 8/21
Neural Network “activation” of unit in layer matrix of weights controlling function mapping from layer to layer If network has units in layer , units in layer , then will be of dimension . 23.12.2011. Miroslav Tišma 9/21
Simple example: AND -30 +20 +20 23.12.2011. Miroslav Tišma 10/21
Example: OR function -10 +20 +20 23.12.2011. Miroslav Tišma 11/21
Multiple output units: One-vs-all. Pedestrian Car Motorcycle Truck Want , , etc. , when pedestrian when motorcycle when car 23.12.2011. Miroslav Tišma 12/21
Neural Network (Classification) total no. of layers in network no. of units (not counting bias unit) in layer Layer 1 Layer 2 Layer 3 Layer 4 • Multi-class classification (K classes) • K output units Binary classification 1 output unit E.g. , , , pedestrian car motorcycle truck 23.12.2011. Miroslav Tišma 13/21
Cost function Logistic regression: Neural network: 23.12.2011. Miroslav Tišma 14/21
Gradient computation Our goal is to minimize the cost function • Need code to compute: 23.12.2011. Miroslav Tišma 15/21
Backpropagation algorithm Given one training example ( , ): Forward propagation: Layer 1 Layer 2 Layer 3 Layer 4 23.12.2011. Miroslav Tišma 16/21
Backpropagation algorithm Intuition: “error” of node in layer . element-wise multiplication operator For each output unit (layer L = 4) Layer 1 Layer 2 Layer 3 Layer 4 the derivate of activation function can be written as 23.12.2011. Miroslav Tišma 17/21
Backpropagation algorithm Training set Set (for all ). used to compute • For • Set • Perform forward propagation to compute for • Using , compute • Compute 23.12.2011. Miroslav Tišma 18/21
Advantages: • Relatively simple implementation • Standard method and generally wokrs well • Many practical applications: • * handwriting recognition, autonomous driving car • Disadvantages: • Slow and inefficient • Can get stuck in local minima resulting in sub-optimal solutions 23.12.2011. Miroslav Tišma 19/21
Literature: • http://en.wikipedia.org/wiki/Backpropagation • http://www.ml-class.org • http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html 23.12.2011. Miroslav Tišma 20/21
Thank you for your attention! 23.12.2011. Miroslav Tišma 21/21