1 / 31

Overview of Transport Codes Evaluation Project (for Medium-Energy Heavy-Ion Collisions)

This talk presents the motivation and aims of the Transport Code Comparison (TCC) project, which aims to compare transport codes for heavy-ion collisions to ensure the robustness of the description of these collisions. It discusses the different scenarios and questions addressed in the project and provides an overview of the participants and current status of the project.

dbarber
Télécharger la présentation

Overview of Transport Codes Evaluation Project (for Medium-Energy Heavy-Ion Collisions)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OverviewofTransport Codes Evaluation Project (for Medium-Energy Heavy-Ion Collisions) Hermann Wolter, University ofMunich Workshop „Challengesto Transport Theoryfor Heavy-Ion Collisions, ECT*, Trento, Italy, May 20-24, 2019

  2. Motivation andaimsofthis talk: • Ideaforthisworkshopcamefromthe Transport Code Comparison (TCC) project • The TCC isconcernedabouttherobustnessofthedescriptionof heavy-ioncollisions • (HIC) bytransportcodes (and not in theinterpretationofdata) • TCC comparestransportcodesunderasmuchaspossibleidentical (i.e. controlled) • conditions in different scenarios • 1. full HIC atenergiesbetween 400 and 1500 AMeV • 2. infinite nuclear matter (approx. byperiodic box) with • onlyelasticcollisions (Cascade) • onlymeanfield (mf) propagation (Vlasov) • inelasticcascadeanddecayforpandD • Fromthe TCC welearn not onlyaboutdifferencesofcodes, but also aboutthe • innerworkingsoftransportsimulations • - fluctuations • - correlationsbetweencollisions • - pitfalls in thesimulationofinelasticprocessesanddecay • These andotherquestions (quantumeffects) will bediscussed in thisworkshop contentsofthis talk On behalf ofthe Transport Code Comparison Project - ofthe order of 30 participants - coregroup: Maria Colonna (Catania), Akira Ono (Sendai), Yingxun Zhang (CIAE, Beijing), Jun Xu (SINAP, Shanghai), Betty Tsang (MSU), Pawel Danielewicz (MSU), Jongjia Wang (Houzhou), HHW (Munich)

  3. The Phase DiagramofStronglyInteractingMatter HIC: trajectories in phasediagram SIS 18, NSCL, RIKEN Asymmetryaxis --> searchforsymmetry energy Exoticnuclei Core collapse SN Note: HIC trajectoriesare non-equilibriumprocesses transporttheoryisnecessary but hasto check itsrobustness Extensive effortsby: - Microscopictheory - Neutron starobservations - HI experiments in thehadronicregime, onlywaytoinvestigatedenseneutron-rich matter in the lab

  4. DL r Instabiitypoints Theoreticalfoundationoftransporttheory: based on a chainofapproximationsfrom real-time Green functions via Kadanoff-Baymeqs. to Boltzmann-Vlasoveq. (semi-classical , quasi-particleapprox.) Molecular-Dynamics-like (QMD/AMD) In practice: twofamiliesoftransportapproaches Boltzmann-Vlasov-like(BUU/BL/SMF) TD-Hartree(-Fock) (orclassicalmoleculardynamicswithextendedparticles, Hamiltonianeq. ofmotion) plus stochastic NN collisions Dynamics ofthe 1-body phasespacedistributionfunctionfwith 2-body dissipation (collisionterm, gainandloss) Solution withtestparticles, exactfor NTP∞ includefluctuationsarounddiss. solution Noquantumfluctuations, but classical N-bodyfluctuations, dampedbythesmoothing. Boltzmann- Langevineq.  amountcontrolledbywidthofsingleparticle packet DL f-space Will see, thatthe different amountoffluctuations accountsformuchofthe different behaviourof BUU and QMD

  5. Status ofSymmetryEnergy Research successes Inconsistencies: example double ratioof n/p pre-equilibriumemiss. D.D.S.Coupland, et al., PRC94, 011601(R) (2016) ρ0 2ρ0 • H.J.Kong, et al., PRC91,047601 (2015) GW170817 Abbott et al. (2018) L=63±11 MeV SkM* L=46 MeV,mn*>mp* SLy4 L=46 MeV, mn*<mp* Reasonsfordifferencesoften not clear, sincecalculationsslightly different in thephysicalparameters. A needformoreconsistency in HI simulations.  thereforecomparisonofcalculationswithsame physicalinputand in simplifiedcases, i.e. undercontrolledconditions

  6. Evolution of Code Comparison Project Steps • 2. Calculationsofnuclear matter (box withperiodicboundaryconditions) • testseparatelyingredients in a transportapproach: • a) collisiontermwithoutandwithblocking (Cascade) (MSU 2017) • Y.X. Zhang, et al., Phys. Rev. C 97, 034625 (2018) • b) p, Dproduction in Cascade (Busan 2018) • A. Ono, et al., PRC submitted, arXiv 1904.02888 • c) p,Dproduction in a full HIC : Sn+Sn, 270 AMeV • d) meanfieldpropagation (Vlasov) • e) instabilities , fragmentation ….. 1. Full heavy ioncollisions (Au+Au) a) highenergy ~1 AGeV: attentiontop,Kproduction (Trento 2004) E. Kolomeitsev, et al., J. Phys. G 31 (2005) S741 b) intermediate energy , 100, 400 AMeV, attentiontoflowand NN collisionrates (Trento 2009 and Shanghai 2014) J. Xu et al., Phys. Rev. C 93, 064609 (2016) -> considerablediscrepancies, but difficulttodisentangle done done in progress planned  19 codesofBUU- and QMD-type  non-rel. andrelativisticcodes  antisymmetrized QMD code: AMD, (CoMD)  BUU codeswith explicit fluctuations: SMF, BLOB  manynew Chinese codes: (I)QMD-XXX: muchnewactivity in China, originallycloselyrelated

  7. Au+Auatb=7fm (midcentral) 400 AMeV, selectedcontourplots; different evolutionapparent quantifyspreadofsimulationsbyvalueofflowparameter =slopeoftransverseflowatmidrapidity BUU and QMD approx. consistent uncertainity 100 AMeV: ~30% 400 AMeV: ~13% Code ComparisonProject (1st stage): Differencesbetweencodesseen in - initialization, - densityevolution - collisionratesandblockingofcollisions -observables: flow Difficulttodisentangleoriginofdiscrepancies, sinceeffectsinteract

  8. 2. Box calculationcomparison simulationofthestaticsystemof infinite nuclear matter,  solvetransportequation in a periodic box Usefulformanyreasons: - check thermodynamicalconsistencyofcalculation - check consistencyofsimulation: collisionnumbers, blocking, dissipationrelation,.. (oftenexactlimitsfromkinetictheory) - check different aspectsofsimulationseparately Cascade: onlycollisions without/withblocking Vlasov: onlymeanfieldpropagation - check strategiesforparticleproduction, e.g. pions Weconsider box calculations not asunrealisticphysicalsituation,butas an importanttool to understand transportsimulations Theyshouldleadto an improvementanddevelopmentoftransportapproaches: Thisisthethemeofthisworkshop

  9. Collisionterm in box calculations no blocking collisionprobability Collisionrates in a cascade box calculation (w/o meanfield, T=0 and 5 MeV) withoutblocking Comparisontoexactlimit (vrelandaveragedepend on treatment ofrelativity) goodagreementwithcorrespondingexactresult collisionprobabilitygenerally ok -> but smalldeviations. Can one understand?

  10. Collisionprobabilitiesand correlations N1 N2 Collisionprobability: - geometricalcriterion (Bertsch-Das Gupta, 1988) someissuesaboutreferenceframeandrelativisticeffectsforcalculationofand see Box-Cascadepaper, Phys. Rev. C97, 034625 (2018) - statisticalcriterionin a cell (pBUU) ormeanfreepathcriterion (SMF) (workslightlybetter) X N1 Correlationsbetweencollisions 1) particlesshould not collidetwice (crosssectionrepresents T-Matrix) N2 2) collisionofonepartnerwithanotherparticle X --> higher order correlation - enhancesinteractionwithgeometricalcriterion - not contained in classical Boltzmann result. Thusdifferences in comparisonwith „exact“ resultsplausible. - small in thiscase, but depends on time stepDt, increaseswithsmallerDt - physicaleffect ? (tobediscussed in workshop) - will bemoreimportantwhenparticleproductionconsidered (--> pions)

  11. withblocking Sampling ofoccupation prob. in comp. toprescribed FD distribution (red) Simulation T=5 MeV 1st step time averaged kinetictheory (exact) widthandaveragesofcalculatedoccupationnumbers in different codes prescribedoccupation averagecalculatedoccupation averageof f<1 occupation (usedfortheblocking) - fluctuation in BUU controlledby TP number, canbe madearbritrarilysmall - fluctuation in QMD givenbywidthofwave packet Collisionrates - almost all codeshavetoolittleblocking, i.e. allowtoomanycollisions, - QMD codesmore, becauseof larger fluctuations Fluctuationsinfluencedynamicsoftransportcalculations. Howeverthe proper treatmentoffluctuations in transportisunderdebate.

  12. Box simulations: test of m.f. dynamics (in progress) Maria Colonna • - Symmetric matter-- • Onlymean-fieldpotential • No surfaceterms • Compressibility K=240 and 500 MeV 1. Density oscillations in the stable regime, timeevolutionofρ(z); 2. Fourier transform in space, mode oscillation λ = 2π/k ρk (t) = ʃ dz sin(kz) ρ(z,t) k=k1 r(z,t=t0)= ρ0 + aρ sin(kiz) damping ki = ni 2π/L, aρ = 0.2 ρ frequency time evolution: strong damping 3. Fourier transform in time: extractresponsefunct., compare tolinearresponse ρk (t) ρk (ω) = ʃ dt cos(ωt) ρk(t) frequency example: SMF results damping ρk (ω) ω

  13. Evolution ofdensityoscillation in different codes: --> differences in frequencyandamplitude detailat t=40 fm/c Seemstodepend on fluctuations, i.e. representationofphasespace. Test twospecificcodes: SMF changetestparticlenumber NTP ImQMDchangewidthofwave packet Dx

  14. Timeevolutionof Fourier transformρk ρk (t) = ʃ dz sin(kz) ρ(z,t) Generally: strong damping - SMF (BUU-like, dashedcurves) smallernoof TP: moredamping, larger frequency - ImQMD (solid curves) decreasingwidthDxofwave packet: larger fluctuationsstrongerdamping larger effectiveforces larger frequencies SMF 40 TP SMF 1 TP ImQMD (Dx)2=.25 fm2 2 fm2 9 fm2 rk(t) [fm-2] Gradient along z-axis SMF: - Convergestoanalyticalresultwithincreasing TP number, - Dependence on TP number becauseof non-linearityofinteraction (r² term) ImQMD: - gradienttoolowforusualchoiceDx=2fm² - larger averagingthan in BUU - explainslowerfrequency Increasing NTP, smallerfluctuations ImQMDDx=0.25 fm2 Dx=2 fm2 Dx=9fm2 analytical SMF NTP=1 NTP=2 NTP=10 NTP=40 analytical IncreasingwidthDx smallerfluctuations, but moreaveraging

  15. Timeevolutionof Fourier transformρk ρk (t) = ʃ dz sin(kz) ρ(z,t) Generally: strong damping - SMF (BUU-like, dashedcurves) smallernoof TP: moredamping, larger frequency - ImQMD (solid curves) decreasingwidthDxofwave packet: larger fluctuationsstrongerdamping larger effectiveforces larger frequencies SMF 40 TP SMF 1 TP ImQMD (Dx)2=.25 fm2 2 fm2 9 fm2 rk(t) [fm-2] Gradientsforcaseof K=500 MeVfor different codes: morestable, but systematicdiff, between BUU and QMD Increasing NTP, smallerfluctuations ImQMDDx=0.25 fm2 Dx=2 fm2 Dx=9fm2 analytical SMF NTP=1 NTP=2 NTP=10 NTP=40 analytical IncreasingwidthDx smallerfluctuations, but moreaveraging

  16. Response fct. ρk (t) = ʃ dz sin(kz) ρ(z,t) ρk (ω) = ʃ dt cos(ωt) ρk(t) Fourier transformwithrespecttospace and time Fourier transformwithrespecttospace K=240 MeV SMF simulations without transient initialbehaviour n = 1 rk(w) [fm-1] n = 2 rk(t) [fm] n = 1, E ~ 18 MeV responsefunctioncomparison SMF-ImQMD (K=500 MeV) ImQMD rk(w) [arb. units] SMF Landau damping Fluctuationsstronglyinfluence propagationofcollectivemodes numerical damping

  17. p,Dproduction in box cascadecalculation(arXiv1904.02888) Motivation: p+/p- ratioexpectedtobegood probe ofthehigh-densitysymmetryenergy expected but variouscalculations givevery different conclusions New feature: inelasticcollisions, pDdynamics dynamicsofparticleswith finite width Simplifysituationto understand differences: Box calculation, r=r0, T=60 MeV, asymmetryd=0., 0.2 Cascadecalculation: nom.f., no Pauli-blocking, standard x-sectionsandwidths NN ND NLK Np Exact: equilibrated ideal Boltzmann gas mixture orrate eq. (thermal but not chemicalequil.

  18. Numbers ofD‘sandp‘s(thinblacklines: rate eqs.) In rathergoodagreementwithexactresult. Now turn on pproduction large differencesbetweenmodelsandexactresultwhenincludingD decay. However, wearereallyinterested in ratiosofpions. Perhapsbetter?

  19. Ratiosofparticlenumbers (dashed: rate eq.) Thisisthep-/p+ratioobserved after all theD‘sdecay Dependence on time stepDt: 0.2 fm/c and time stepusedbythecodeforlatetimes, (twocodesaretimestepfree (collisionsorderedaccordingto linear extrapolationofpath)), tendencytoconvergeto rate eq. resultforDt-->0 . earlytimes, 10<t<30 fm/c; non-equilibriumphase, lesscloseto rate eq.

  20. Ratiosofparticlenumbers (dashed: rate eq.) Thisisthep-/p+ratioobserved after all theD‘sdecay Dependenceof time stepDt: 0.2 fm/c and time stepusedbythecodeforlatetimes, (twocodesaretimestepfree (collisionsorderedaccordingto linear extrapolationofpath)), tendencytoconvergeto rate eq. resultforDt-->0 . • The p-likeratiofor all codesiswithin 5%! Consistencyofcodes in this observable, especially in the • limitDt-->0 • But weneedto understand betterthereasonforthediscrepanciesofthecodesandtheagreement • in theratio. • Twofactors: • Collision-decaysequence: strategy, howtheelastic, inelasticanddecaysaretreated in thesimulation • Correlationsbetweencollisions

  21. Collision-decaysequencestrategies: In a given time step k thevariousreactionsareprocessed in a givensequence: Ck: elasticandinelasticcollisions: NN->NN, NN-<ND, ND->NN, Np->D, thus ND , Np Dk: decaysD->Np , thus ND , Np Someexamplesofstrategies: Particlenumbersrecordedat end ofcomputationalstep Collisionprocessed in sequence ofeventtimes, „time stepfree“, but morecomplicatedwith mf propagation SequenceCk, Dk: NDlow, Nphigh SequenceDk, Ck: Nplow, NDhigh Random, fixedlistofCk, Dk But producedp‘sareinactive, Nphigh Collision-decaysequencecaninfluenceparticleratios, andevenleadtoapparentsymmetryviolation Effectshoulddisappearfor time stepDt-> 0 (seenpartly in Dtdependence), but practicaldifficulties , andincreasedcorrelations (seenext)

  22. Higher order correlations Alreadydiscussedaboveforonlyelasticscattering, but thereeffectsmall. More significantwhenparticlescanchangetheiridentities: Examplesofhigher order correlationswithD,p‘s.: RecreatesthedecayedDj, Increases ND Enhancestheprobabilityof a secondNiNjcollisiontoproduce a D. Increases ND EnhancestheprobabilityoftheNi‘Dj‘ collisiontodestroy a D. Decreases ND X • Consequences: • These correlationschangesthepandDratios, andcanleadtoisospinviolation • IncreasewithsmallerDt, sincethepartnersare still close after the intermediate collisionwith X • (becauseofgeometricalcollisioncriterion) • The importanceofthesevarioushigher order correlationsdepends on thecollision-decaysequence N1 N2 • Conclusionsfromthepion box studies • togetherthetwoeffectscanmakemostofthedifferencesbetweenthecodes plausible • randomizethecollision-decaysequenceandremovesomehigher-order correlations • It was not known in thisdetailbefore, that different strategies (whichare not fixedbytheequations) • affect observables significantly • somecodesalreadyimproved, others will improveas a consequenceofthisstudy (but not easilydone) • in thisstudytheimportantp-likeratioisrather robust, within 5% in theequilibratedregime. • hastobeseenhowthistranslatesintoactual HIC (in progress)

  23. Summary -Transport approaches indispensable toextractphysicsinformationfrom heavy ioncollisions. Questions in theapplicationoftransporttheories: - physics(degreesoffreedom, fieldsand in-medium cross-sections, fluctuations, correlations, shortrange) - implementation: simulation, ratherthansolutionofthetransportequations - involvesstrategies , such as representationofthephasespace (fluctuations), criteriaforcollisions (e.g. geometrical) correlations, Pauli blocking - mayaffectthededuction on physicsfromcollisionsandleadto a kindofsystematicaltheoretical error - hereattemptto understand, quantifyandhopefullyreducetheseuncertainities in a Transport Code ComparisonunderControlledConditions Results: - Comparisonoffull HIC makes evident thediscrepancies, but difficulttodisentangle - Box calculationstostudythe different ingredientsoftransportseparately (collisionprobability, blocking, mf evolution, particleproduction) - Importantinfluenceoffluctuations on blockingand mf propagation - Higher order correlations, generatedbygeometricalstrategyaffectsparticleproduction - Fluctuationsandcorrelationsgobeyondtheone-bodydescription. Implementionsdiffer in BUU (explicit fluctuationterm) and QMD (classicalcorrelations + smoothingbywave packet) - quantumeffects(atlowenergy), off-shellofparticleswithspectralfct Extensionsof 1-body semi-classicaltransportapproachnecessary. Subjectofthisworkshop. Thankyoufortheattention

  24. Momentumandmodedistributions Fluctuationsactas a disspativeforve (Reinhard, Ayik) SMF rk(n) (t) [fm-3] n Initial n=1, distributionatvarioustimes Dampingofinitialmode, diffusionintoothermodes

  25. ρk (ω) = ʃ dt cos(ωt) ρk(t) ρk (t) = ʃ dz sin(kz) ρ(z,t) Fourier transformwithrespecttospace and time Fourier transformwithrespecttospace K=240 MeV SMF simulations without transient initialbehaviour n = 1 rk(w) [fm-1] n = 2 rk(t) [fm] ω / (k vF ) ~ 1 n = 1, E ~ 18 MeV - QMD-likemodels: appearstructureless, largedamping - BUU-likemodels: differences in frequency and damping verypreliminary ! rk(w) [fm-1] Fluctuationsstronglyinfluence propagationofcollectivemodes

  26. p,Dproduction in box cascadecalculation (arXiv1904.02888) Motivation: p+/p- ratioexpectedtobegood probe ofthehigh-densitysymmetryenergy expected but variouscalculations givevery different conclusions New feature: inelasticcollisions, pDdynamics dynamicsofparticleswith finite width Simplifysituationto understand differences: Box calculation, r=r0, T=60 MeV, asymmetryd=0., 0.2 Cascadecalculation: nom.f., no Pauli-blocking, standard x-sectionsandwidths NN ND NLK Np Exact: equilibrated ideal Boltzmann gas mixture or rate eq. (thermal but not chemicalequil.

  27. ratio of pion yields, Au+Au,0.4-1.2 GeV/A Esym r/r0 variousmodels blue: stiffersymmenergy red: softer symmenergy  noconsensus, evenon ordering Why Code Comparison? Failures B.A.Li, PRL 88, 192701 (2002) data FOPI Reasonsfordifferencesoften not clear, sincecalculationsslightly different in thephysicalparameters. A needformoreconsistency in HI simulations: examples  thereforecomparisonofcalculationswith same physicalinput, i.e. undercontrolledconditions

  28. 1 + 1/F0 = s/2 ln[(s+1)/(s-1)] LinearizedVlasovequation stationarysolutions (oscillations)  extract the oscillationfrequency s = ω / (k vF ) Landau parameter F0 = K / (6 εF ) - 1 K = 240 MeV F0 = 0.1 analytical relation betweenoscillation frequencyand compressibilityK s stable regime Landau damping unstable regime Fluctuations are amplified  fragmentformation, interestingfor box comparison in the future s ~ 1 n = 1, E ~ 18 MeV --> Second roundofcalculationswith K=500 MeV

  29. BUU BUU BUU withblocking QMD Sampling ofoccupation prob. in comp. toprescribed FD distribution (red) - fluctuation in BUU controlledby TP number, canbemadearbritrarilysmall - fluctuation in QMD givenbywidthof wave packet widthandaveragesofcalculatedoccupationnumbers in different codes prescribedoccupation averagecalculatedoccupation averageof f<1 occupation (usedfortheblocking)

  30. Collisionrateswithblocking - almost all codeshavetoolittleblocking, i.e. allowtoomanycollisions, - QMD codesmore, becauseof larger fluctuations Simulation T=5 MeV 1st step time averaged kinetictheory (exact) Evolution ofmomentumdistributions - themomentumdistributionmoves awayfromthestable Fermi-Dirac distributiontowardstheclassical Maxwell-Boltzmann distribution (dottedline), - depending on collisionrates Fluctuationsinfluencedynamicsoftransportcalculations. Howeverthe proper treatmentoffluctuations in transportisunderdebate. time

More Related