1 / 13

Enzymology

Enzymology. Lecture 5 by Rumeza Hanif. Why isolate enzymes?. It is important to study enzymes in a simple system (only with small ions, buffer molecules, etc .) for understanding its structure, kinetics , mechanisms, regulations, and role in a complex system

deanna
Télécharger la présentation

Enzymology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Enzymology Lecture 5 by RumezaHanif

  2. Why isolate enzymes? • It is important to study enzymes in a simple system (only with small ions, buffer molecules, etc.) for understanding its structure, kinetics, mechanisms, regulations, and role in a complex system • „ Also isolating pure enzyme is important to use it for medical and industrial purposes

  3. Objective of enzyme purification • maximum possible yield + maximum • catalytic activity + maximum possible purity

  4. Strategy Source Homogenization/lysis Extract Purified enzyme Purification

  5. Choice of Source • Classical approach involves choosing a source containing large quantity of enzymes • „ Acetyl CoAcarboxylase (mammary gland) • „ Alkaline phosphatase (kidney) • „ Modern approach with DNA recombinant technology • „ 3-phosphoshikimate-1-carboxyvinyl transferase in E. coli (1984) • „ 100-fold increase in productivity • „ Prokaryotes as host organisms (E. coli and Bacillus) • „ Rapid growth and simple medium components

  6. Choice of Source • Yeasts (but grow slowly) • „ Insect cell with baculovirusvector.„ It can employ many of the protein modification, processing, and transport system in higher eukaryotic cells • „ ‘Fusion Protein’ Glutathione-S-transferase, maltose binding protein, or His-tag are popularly used They greatly enhance the power of purification and sometimes solubility of protein

  7. Choice of Source • „ Production occurred in the strain known to make the enzyme of interest • „ alkaline protease or α-amylase -> Bacillus licheniformis, • glucoamylase-> Aspergillus, • „ acid cellulase -> Trichoderma, • „ glucose/xyloseisomerase-> Streptomyces

  8. Methods of homogenization/lysis • Mechanical methods • „ High pressure homogenizer* (55 MPa) : cooling is • important • „ Wet grinding by mills or glass balls • „ Non-mechanical methods • „ Drying • „ Lysis by osmotic shock, detergents, or enzymes • „ Ultrasound* • „ Cooling and protease inhibition are important to recover the enzyme

  9. In recent years, detergent-based lysis methods have become the norm. • Through empirical testing by trial and error, different detergent-based solutions composed of particular types and concentrations of detergents, buffers, salts and reducing agents have been developed to provide the best possible results for particular species and types of cells. • Detergents have both lysing and solubilizing effects.

  10. Protease Inhibition and Protein Stabilization • Cell lysis disturbs the carefully controlled cellular environment, allowing endogenous proteases and phosphatases to become unregulated. As a result extracted proteins become degraded or artifictuallymodified by the activities of these molecules. • To prevent these effects and obtain the best possible protein yield in cell lysis, protease and phosphatase inhibitors are added to the lysis reagents. • When the goal of cell lysis is to purify or test the function of a particular protein, special attention must be given to the effects of the lysis reagents on the stability and function of the protein(s) of interest. Certain detergents will inactivate the function of particular enzymes, and long-term stability of extracted/purified proteins often requires that they be removed from the initial lysis reagents and/or stabilized by addition of particular compounds.

  11. Methods of homogenization • Animal cells (organs): „ It is easy to homogenize due to the lack of cell wall. „ Fat and connective tissue must be removed before homogenization. • „ Bacteria and Fungi: „ Cell wall must be digested by enzymes. • „ Plant :„ Disruption of vacuole can damage enzymes • „ Membrane proteins: „ Usually detergent (anionic, cationic, or neutral) is added • „ Detergent must be chosen by considering the choice of purification method, especially column chromatography

  12. Methods of separation (Size and Mass) • Ultracentrifugation (300,000g): „ Mass is the major factor for separation • „ Not very efficient to separate a enzyme from enzyme pool : Usually used to remove impurities • „ Gel filteration„ Sephadex, Bio-Gel P, Sephacryl, and Sepharose – expensive and time-consuming. Usually in later stage of purification • „ Dialysis„ Usually used for removing salts, organic solvents, etc.. • „ Ultrafilteration„ Small molecules are filtered out by pressure. „ Used for concentrating proteins

  13. Methods of separation (Polarity) 1.Ion-exchange chromatography: • „ Electrostatic property • „ Flow through in low salt and at appropriate pH • „ Desorption by changing salt conc’ and pH • „ Enzymes can be separated by gradient condition • „ Large scale is possible • „ Usually 10-fold increase in purity 2. Electrophoresis

More Related