1 / 33

Chuck Dermer (NRL) Naval Research Laboratory, Washington, DC charles.dermer@nrl.navy.mil

Radio-Loud AGNs as the Sources of the Ultra-High Energy Cosmic Rays. Chuck Dermer (NRL) Naval Research Laboratory, Washington, DC charles.dermer@nrl.navy.mil Recent work with

denise
Télécharger la présentation

Chuck Dermer (NRL) Naval Research Laboratory, Washington, DC charles.dermer@nrl.navy.mil

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radio-Loud AGNs as the Sources of the Ultra-High Energy Cosmic Rays Chuck Dermer (NRL) Naval Research Laboratory, Washington, DC charles.dermer@nrl.navy.mil Recent work with Matteo Cerruti (CfA), Catherine Boisson (LUTH), Andreas Zech (LUTH), Benoît Lott (CEN Bordeaux), Hajime Takami(KEK), Kohta Murase (IAS) Mid-Atlantic Radio-Loud AGN Meeting, 27 September 2013 , STScI

  2. Observer Leptonic jet model: Nonthermal synchrotron paradigm Associated SSC and EC component(s) Target photon sources: Accretion-disk radiation Broad-line region radiation IR radiation from molecular torus q BLR clouds G Standard Blazar Model Relativistically Collimated Plasma Jet Dusty Torus Five Major Fermi/IACT Blazar Discoveries W Accretion Disk • GeV spectral breaks in FSRQs, LSP/ISP blazars • 3C 454.3 • Rapid variability • Shorter than the BH dynamical timescale • VHE radiation from FSRQs • 3C 279, 4C +21.35, PKS 1510-089 • Two classes of BL Lac objects • Strongly variable (Mrk 421, Mrk 501, PKS 2155-304) • Weaky variable (1ES 0229+200, 0347-121, 1101-232) • EBL/IGMF relationship • Extra component in EBL deabsorbed blazar SED (Finke et al. 2010) • Stecker-Scully relation • Measuring the IGMF SMBH G Ambient Radiation Fields

  3. Equipartition Blazar Modeling • Use log-parabola function for electron distribution • From observations of Lsyn, nsyn, and tvar, derive parameters for B, Doppler factor dD, gpk, r’b • Use numerical model to adjust parameters to fit data, implying energy density of the external radiation field and (minimum) absolute jet power • Constrain location of the g-ray emission site • Explain GeV cutoff in FSRQs and LSP/ISP blazars 3-parameter model: amplitude K, curvature b, gp

  4. Equipartition Relations • Assume (3-parameter) log-parabola function for electron distribution • Use observables and equipartition relations to derive G, B, gp,DR’b log-parabola width gives monoenergetic electron specrum Spectral Relation: What does equipartition mean? Equipartition Relation:

  5. Solution to System of Equations Corrections for b ≠  Minimum jet power Dermer et al. (2012)

  6. FSRQ Modeling 1 GeV Syn vs. EC beaming effect (Dermer 1995)

  7. FSRQ Modeling: Dependence on b and tvar 1 GeV

  8. BL Lac Modeling Similar to SEDs of Mrk 421, Mrk 501, but not PKS 2155-304, 1ES 0229+200, 1ES 1101-232. Contrary to flaring periods in Mrk 501

  9. 3C 279 Model Data from Hayashida et al. (2012)

  10. 3C 279 Model Data from Hayashida et al. (2012)

  11. Implications • External-fieldenergydensities • Normallyt = 0.1, impliesthatemissionregionnearouteredge of the BLR, ~0.1-0.3 pc from SMBH • Jet Model • Collidingshells • Jet Power • Lessthan Eddington luminosity for MSMBH = (3-8)x108 Mo • ParticleAcceleration • Second-order Fermi acceleration • Extra high-energy spectral component

  12. GeV Spectral Cutoff Explain GeV spectral cutoff by scattering Ly a radiation (Cerruti et al. 2013) Code improvements (Ackermann et al. 2013) (Telfer et al. 2002) Electron distribution (Abdo et al. 2009) gg absorption (Poutanen & Stern 2011) Compton scattering model (Finke & Dermer 2011) Multi-line model Thermal spectrum for dust radiation

  13. Spectral Fits to 3C 454.3 Cerruti et al. (2013) Epoch A: August 2008 low state (Abdo et al. 2009) Epoch B: November 2010 high state(Abdo et al. 2011; Wehrle et al. 2012)

  14. HiRes Collaboration 2008 Auger Collaboration 2009 UHECRs from Radio-Loud AGNs Standard one-zone synchrotron/SSC model Parameters: B, d, R Hillas condition: UHECR sources must satisfy: • Extragalactic • Adequate energy production rate within GZK volume • Sources within GZK radius • UHECRs can escape from acceleration region • Mechanism to accelerate to ultra-high energies Murase, Dermer, Takami, Migliori (2012)

  15. g g Gamma-ray and Cosmic-ray Induced TeV emissionfrom Jetted Sources g e+ g 2g e- Weakly variable cascade radiation lgg g g n,e+ e+ p0, p p g p 2g n,e- e- ~100 Mpc ~ Gpc UHECR protons with energies ~1019 eV make ~1016 eV e that cascade in transit and Compton-scatter CMBR to TeV energies Essey, Kalashev, Kusenko, Beacom (2010, 2011)

  16. Polisensky & Ricotti 2011 Electromagnetic Signatures of UHECRs Photopair-induced cascade in IGM Murase et al. 2012

  17. >10 GeV Sources Explained by Cascade Emission KUV 00311-1938 (z = 0.61) 2 > 100 GeV g-rays within 0.2o Takami, Murase, Dermer 2013 Normalization imposed to fit > 10 GeV Fermi-LAT spectrum from cascade emission • Fermi-LAT analysis • Pass 7 • > 10 GeV • Source class • ROI between 8 and 15 degrees • Use 2FGL source list to remove background sources • g-ray induced cascades • gg/Compton cascade • Use Kneiske et al. (2004) for low and best-fit EBL • Assume no suppression from IGMF ( 10-15 G < BIGMF < 10-20 G) • Intrinsic source spectrum F(Eg) Eg-s , 5.6 GeV < Eg < 100 TeV • UHECR-induced cascade • Bethe-Heitler pair production, photopair production, expansion • UHECR proton sources spectrum: F(Ep) ~ Ep-2.6exp(- Ep/Ep,c), Ep,c =1019eV • Assume no suppression from IGMF (10-10 G < BIGMF for protons)

  18. Predictions for CTA KUV 00311-1938 (z = 0.61) PG 1246+586 (z = 0.847) • KUV 00311-1938 (z = 0.61) • Detected by HESS at 5.1s with 52.5 hrs observation (Stegmann 2012) • Lg > 3.5x 1046 erg/s • LUHECR >1.1 x1047 erg/s • PG 1246+586 (z = 0.847) • Not yet detected by TeV instrument • Lg > 7.5x1046 erg/s • LUHECR >2.0x1047 erg/s • Other sources detectable by 50 hour observations with CTA in the Neronov et al. (2012) list are Ton 116, B3 1307+433, 4C +55.17, and PKS 1958-179.

  19. Pair Production and Photohadronic Opacity in 4C +21.35 Inject ultra-relativistic leptons: Dermer, Murase, Takami (2012) Make synchrotron g-rays Detection of 40-700 GeV g rays  x >> 0.1pc →←

  20. Modeling New equipartition technique for fitting blazar SEDs Fits to 3C 279 Emission region at outer edge of BLR Explain GeV cutoffs of 3C 454.3 UHECRs: Blazars are the likely source of UHECRs, as can be tested with CTA UHECRs from blazars would explain extra high-energy spectral components Stecker-Scully relation, weakly variable BL Lac class VHE g-ray production in FSRQs Summary Dermer MARLAM 26 September 2013

  21. EBL Effects on Blazar Spectra Dermer et al. 2011 • GeV-TeV Spectral Index Difference DGStecker-Scully (2006, 2010) relation • Measurements of IGMF (>~ 10-15 G for persistent jet; >~10-18 G for jet active for observing period) Origin of hard component in deabsorbed BL Lac spectra? GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship

  22. Fermi Observations of 4C+21.35 PKS 1222+2163 = 4C+21.35, z = 0.432 Fermi-LAT spectrum Fermi LAT observations • Major flares 2010 April and June • sub-day scale variability • hour-scale variability (Foschini et al. 2011) • nFn peak at 1 – 10 GeV 22

  23. GeV-TeV Connection Neronov et al. 2012 • 21 joint GeV-TeV sources Abdo et al. (2009) • 46 Extragalactic Sources listed in the VHE sky Wagner’s catalog • Neronov et al. (2012) source catalog of 13 candidates of VHE emission at z > 0.5 • EBL effects greater on more distant blazars • tgg(Ec,z) = 1 at Ec≈ 100 GeV/z for 0.03 < z < 3 • Model the >10 GeV Fermi-LAT emission by cascade grays vs. cascades induced by UHECRs • Find minimum required jet powers and predictions for CTA

  24. Five Big Fermi/IACT Blazar Discoveries LBAS, Abdo et al. 2009 • GeV spectral breaks in FSRQs, LSP/ISP blazars • Rapid variability • VHE radiation from FSRQs • Two classes of BL Lac objects • EBL/IGMF relationships

  25. Five Big Fermi/IACT Blazar Discoveries 3C 454.3 Abdo et al. 2009 GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability VHE radiation from FSRQs Two classes of BL Lac objects EBL/IGMF relationship Ackermann et al. 2010

  26. Five Big Fermi/IACT Blazar Discoveries MAGIC observations of Mrk 501 2005 July 9 Feb 2010 VERITAS OBS of MRK 421, Albert et al. 2007 • GeV spectral breaks in FSRQs, LSP/ISP blazars • Rapid variability • Two classes of BL Lac objects • VHE radiation from FSRQs • EBL/IGMF relationships

  27. Five Big Fermi/IACT Blazar Discoveries HESS obs. of PKS 2155-304 RS/c = 104M9 s tvar ~ 5 min = 300 s (?) M << 108 M0 28 July 2006 flare Aharonian et al. 2007 • GeV spectral breaks in FSRQs, LSP/ISP blazars • Rapid variability • Two classes of BL Lac objects • VHE radiation from FSRQs • EBL/IGMF relationship

  28. Five Big Fermi/IACT Blazar Discoveries 3C 454.3 Ackermann et al. 2010 GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship

  29. MAGIC Observations of PKS 1222+2163 = 4C+21.35 z = 0.432, flare of 17 June 2010 MAGIC spectrum MAGIC observations • Emission over 30 minutes • Flaring on timescales of 10 minutes • Lg ~ 1047 erg/s (TeV energies) • Lg ~ 1048 erg/s (GeV energies) Black hole mass: 1.5x108 Mo (Wang et al. 2004)  extreme MAGIC light curve G = 3.7 Fermi-LAT and MAGIC spectrum Aleksic et al. (2011) Tanaka et al. (2011)

  30. Five Big Fermi/IACT Blazar Discoveries Mrk 421 Abdo et al. 2011a • Variable class • Mrk 421, Mrk 501 • PKS 2155-305 • 0716+714, etc. • Extreme sources • tvar < RS/c Mrk 501 Abdo et al. 2011b GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship

  31. Five Big Fermi/IACT Blazar Discoveries Mrk 421 Mrk 421 Mrk 421 tv = 4 d Abdo et al. 2011a B′=0.015G, d=12, R′=1.3x1017 cm Abdo et al. 2011a Abdo et al. 2011a • Variable class • Mrk 421, Mrk 501 • PKS 2155-305 • Extreme sources • tvar < RS/c • SSC Model fits time-averaged emission B′=0.038G, d=21, R′=5.2x1016 cm Mrk 501 Mrk 501 Mrk 501 tv = 1 d Abdo et al. 2011b Abdo et al. 2011b Abdo et al. 2011b GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship

  32. TeV BL Lac Objects Mrk 421 Tavecchio et al. 2011 1ES 0229+200 z = 0.14 1ES 0347-121 z = 0.186 1ES 1101-232 z = 0.14 1ES 0548-322 z = 0.069 RGB J0152+0.17 z = 0.08 Abdo et al. 2011b Compton-scattered CMBR from extended jet/lobe Albert et al. 2007 Böttcher et al. 2008 • Highly variable class • Extreme sources • tvar < RS/c • SSC Model fits • Large inferred G factors • Weakly variable class • Weak Fermi LAT fluxes • GeV-TeV spectrum: EBL, IGMF

  33. VHE g rays from FSRQs Senturk et al. 2013 And PKS 1510-089 With HESS and MAGIC GeV spectral breaks in FSRQs, LSP/ISP blazars Rapid variability Two classes of BL Lac objects VHE radiation from FSRQs EBL/IGMF relationship

More Related