1 / 56

Electric Dipole Moments and the Origin of Baryonic Matter

V. Cirigliano Caltech C. Lee INT S. Tulin Caltech S. Profumo Caltech. M.J. Ramsey-Musolf. Electric Dipole Moments and the Origin of Baryonic Matter. PRD 71: 075010 (2005) & hep-ph/0603058. Cosmic Energy Budget. Dark Matter. Dark Energy. Baryons.

derek-hood
Télécharger la présentation

Electric Dipole Moments and the Origin of Baryonic Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. V. Cirigliano Caltech C. Lee INT S. Tulin Caltech S. Profumo Caltech M.J. Ramsey-Musolf Electric Dipole Moments and the Origin of Baryonic Matter PRD 71: 075010 (2005) & hep-ph/0603058

  2. Cosmic Energy Budget Dark Matter Dark Energy Baryons Explaining non-zero rB requires CP-violation beyond that of the Standard Model (assuming inflation set rB=0) What is the origin of baryonic matter ?

  3. Cosmic Energy Budget Dark Matter Searches for permanent electric dipole moments (EDMs) of the neutron, electron, and neutral atoms probe new CP-violation Dark Energy T-odd , CP-odd by CPT theorem Baryons What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ? What is the origin of baryonic matter ?

  4. Equally difficult but less studied This talk Baryogenesis and EDMs: Theoretical Tasks • Attaining reliable computations that relate particle physics models of new CP-violation to EDMs of complex systems (neutron, atoms, nuclei) • Attaining reliable computations of the baryon asymmetry from fundamental particle physics theories with new CP-violation Nonperturbative QCD, atomic & nuclear structure • Non-equilibrium quantum transport • Non-zero T and m • Spacetime dynamics of cosmic phase transitions

  5. Overview Theory: Non-equilibrium QFT & quantum transport Phenomenology Outlook & Open Issues How to compute rB systematically from Lnew Connecting rB, EDMs, and dark matter Outline

  6. BBN WMAP Baryon Asymmetry of the Universe (BAU)

  7. Present universe Early universe Weak scale Planck scale Baryogenesis: Ingredients Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967

  8. , Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Baryogenesis: Ingredients

  9. Present universe Early universe ? ? Weak scale baryogenesis can be tested experimentally Weak scale Planck scale Baryogenesis: Ingredients Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967

  10. Present universe Early universe Key Ingredients • Heavy nR • mn spectrum • CP violation • L violation Leptogenesis b-decay, 0n bb-decay, q13 Weak scale Planck scale Leptogenesis

  11. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Kuzmin, Rubakov, Shaposhnikov McLerran,… EW Baryogenesis: Standard Model Anomalous Processes Different vacua: D(B+L)= DNCS Sphaleron Transitions

  12. Shaposhnikov Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics 1st order 2nd order Sakharov, 1967 • CP-violation too weak • EW PT too weak Increasing mh EW Baryogenesis: Standard Model

  13. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Sakharov, 1967 • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics Unbroken phase CP Violation

  14. CKM fdSM dexp dfuture Also 225Ra, 129Xe, d If new EWK CP violation is responsible for abundance of matter, will these experiments see an EDM? EDM Probes of New CP Violation

  15. II. Theory: Systematic Baryogenesis

  16. Better theory Present n-EDM limit Proposed n-EDM limit Matter-Antimatter Asymmetry in the Universe ? M. Pendlebury B. Filippone “n-EDM has killed more theories than any other single experiment”

  17. Systematic treatment of transport dynamics w/ controlled approximations Baryogenesis and EDMs: Better Theory ? Non-equilibrium quantum transport RHIC Violent departure from equilibrium Electroweak Baryogenesis “Gentle” departure from equilibrium

  18. CPV phases Parameters in Lnew Bubble & PT dynamics Departure from equilibrium • Earliest work: QM scattering & stat mech • New developments: non-equilibrium QFT Systematic Baryogenesis Goal: Derive dependence of YB on parameters Lnew systematically (controlled approximations)

  19. Unbroken phase Topological transitions Broken phase nL produced in wall & diffuses in front 1st order phase transition FWS(x) !0 deep inside bubble Systematic Baryogenesis Cohen, Kaplan, Nelson Joyce, Prokopec, Turok “snow”

  20. Unbroken phase Topological transitions … + Compute from first principles given Lnew Broken phase 1st order phase transition = + + Systematic Baryogenesis Riotto Carena et al Lee, Cirigliano, Tulin, R-M Quantum Transport Equation Schwinger-Dyson Equations

  21. + = + + Systematic Baryogenesis Departure from equilibrium • Non-adiabatic evolution of states & degeneracies • Non-thermal distributions Generalized Green’s Functions: Closed Time Path Exploit scale hierarchy: expand in scale ratios e

  22. Non-equilibrium Quantum Field Theory Closed Time Path (CTP) Formulation Conventional, T=0 equilibrium field theory:

  23. Non-equilibrium Quantum Field Theory Two assumptions: • Non-degenerate spectrum • Adiabatic switch-on of LI LI

  24. = + + - + … + Non-equilibrium T>0 Evolution Generalized Green F’ns • Spectral degeneracies • Non-adiabaticity LI

  25. T > 0: Degeneracies M(T) GP(T) vW > 0: Non-adiabaticity Decoherence time: td ~ 1/(vW k) vW e.g., particle in an expanding box Scale Hierarchy Time Scales Plasma time: tP ~ 1/GP

  26. k = kEFF(l,Lw) n=1 n=2 n=3 Quantum Decoherence L L + DL

  27. ep = tint / tP ~ GP / w << 1 Time scales: << 1 ed = tint / td ~ vwk/ w tint ~ 1/w tP ~ 1/GPtd ~ 1/(vwk) GP ~ 3Cf aT/ 8 w2 ~ m2 +2pa Cf T2+ k2 Energy scales: k / w < 1 vw ~ 0.1 em = m / T << 1 Scale Hierarchy

  28. = + Approximations CP violating sources Expand in ed,p,m + • neglect O(e3) terms Chiral Relaxation Producing nL = 0 From S-D Equations: Strong sphalerons • SCPV • GM , GH , GY , GSS • SCPV • GM , GH , GY … + Riotto, Carena et al, Lee et al Lee et al Numerical work: • GSS Currents Links CP violation in Higgs and baryon sectors Quantum Transport Equations

  29. III. Phenomenology: YB, EDM’s, and Dark Matter

  30. Fermions Bosons sfermions gauginos Higgsinos Charginos, neutralinos SUSY: a candidate symmetry of the early Universe Supersymmetry

  31. SUSY and R Parity If nature conserves vertices have even number of superpartners • Lightest SUSY particle is stable viable dark matter candidate • Proton is stable • Superpartners appear only in loops Consequences

  32. 1st order 2nd order Increasing mh 1st order PT in MSSM: mh < 120 GeV mh>114.4 GeV Constraint on mhrelaxed for larger gauge/Higgs sector (NMSSM, etc.) or ~ 90 GeV (SUSY) Systematic Baryogenesis: MSSM LEP EWWG See, e.g., Kang et al for U(1)’

  33. Systematic Baryogenesis: MSSM SUSY mass parameter Soft SUSY-breaking mass parameters

  34. M1 0 -mZ cosb sinqW mZ cosb cosqW T ~TEW : scattering of H,W from background field MN = ~ ~ mZ sinb sinqW M2 -mZ sinb sinqW 0 0 -m -mZ cosb sinqW mZ cosb cosqW -m T << TEW : mixing of H,W to c+, c0 mZ sinb sinqW -mZ sinb sinqW 0 ~ ~ ~ ~ M2 MC = m Systematic Baryogenesis: MSSM Chargino Mass Matrix Neutralino Mass Matrix

  35. T ~TEW : scattering of fL, fR from background field ~ ~ T << TEW : mixing of fL, fR to f1, f2 ~ ~ Qf < 0 Qf > 0 ~ ~ Systematic Baryogenesis: MSSM Sfermion mass matrix

  36. CPV phases: jA , jm Supersymmetric Sources (mSUGRA)

  37. CPV phase: jm Supersymmetric Sources (mSUGRA)

  38. Approximations Approximations • neglect O(e3) terms • supergauge equilibrium: • neglect O(e3) terms • supergauge equilibrium: • Higgs vev expansion Neutral gauginos = Majorana fermions Supersymmetric Sources (mSUGRA)

  39. Approximations Previous work: • neglect O(e3) terms • supergauge equilibrium: GY >> G(-,+) Effect decouples: • Higgs vev expansion • Yukawa decoupling Links rB to Higgsinos Supersymmetric Sources (mSUGRA) O (emep)

  40. Approximations • neglect O(e3) terms • supergauge equilibrium: • Higgs vev expansion • Yukawa decoupling • Fast supergauge int Supersymmetric Sources (mSUGRA) (Super) gauge interactions

  41. Strong 1st order PT: light stop r parameter: heavy LH stop mh < 120 GeV: Bubble wall parameters: Illustrative choice: SUSY Inputs

  42. Baryon Number Higgsinos Squarks

  43. CP violation Relaxation Huet & Nelson Resonant CPV & Relaxation

  44. MSSM EWB: Higgsino-Gaugino driven Precision electroweak Baryon Number

  45. tL tR tL our GY previous GY g H Cirigliano, Lee, R-M, Tulin Joyce, Prokopec, Turok m Baryon Number & GY

  46. Previous work Res Non-Res tR tL tL H g Baryon Number & GY

  47. Near degeneracies resonances BBN WMAP de de 199Hg 199Hg BAU BAU Lee et al EDM constraints & SUSY CPV Different choices for SUSY parameters

  48. Dark Matter Constraints Future: EDMs & LHC de dn BBN WMAP BAU-DM Lee et al Large Hadron Collider Large Hadron Collider EDM constraints & SUSY CPV

  49. BBN Heavier sleptons: weaker one-loop EDM constraints & less resonant baryogenesis EDM constraints & SUSY CPV One-loop de & slepton mass

  50. EDM constraints & SUSY CPV One-loop vs. Two-loop EDMs

More Related