1 / 80

Transversity 2014, 9-13 June , 2014, Chia, Cagliari

DVCS and exclusive channels. Nicole d’Hose, Irfu , CEA S aclay. Transversity 2014, 9-13 June , 2014, Chia, Cagliari. From PDFs to TMDs and GPDs. PDF ( x ). PDF measured in Deep Inelastic Scattering. ℓ p  ℓ ’ X. From PDFs to TMDs and GPDs.

Télécharger la présentation

Transversity 2014, 9-13 June , 2014, Chia, Cagliari

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DVCS and exclusive channels Nicole d’Hose, Irfu, CEA Saclay Transversity 2014, 9-13 June, 2014, Chia, Cagliari

  2. FromPDFs to TMDs and GPDs PDF(x) PDF measured in DeepInelasticScattering ℓp  ℓ’X

  3. FromPDFs to TMDs and GPDs 3-dimensional nucleon structure in momentum and configuration space: • GPD(x, b) : • GeneralisedParton Distribution • (position in the transverse plane) • TMD (x, k) : • Transverse Momentum Distribution • (momentumin the transv. plane) TMD accessible in SIDIS and DY GPD in Exclusive reactions DVCS and HEMP

  4. Exclusive reactions: DVCS and HEMP ℓ’ DVCS: ℓp ℓ’ p’  (golden channel) HEMP: ℓp ℓ’ p’  or  or J/,… ℓ Q²,xB • * •  or , , J/,… GPDs D. Mueller et al, Fortsch. Phys. 42 (1994) X.D. Ji, PRL 78 (1997), PRD 55 (1997) A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

  5. γ* Q2 γ x +ξ x -ξ GPDs p p’ t Q2 meson Q2 γ* • γ* L L L hard x +ξ x -ξ x -ξ x +ξ soft GPDs GPDs p p’ p p’ t Gluon contribution Exclusive reactions: DVCS and HEMP Q2 DeeplyVirtual Compton Scattering (DVCS): Factorisation: Collins et al. γ* γ hard x +ξ x -ξ soft GPDs Q2 large t << Q2 + γ* p p’ p’ t Hard Exclusive Meson Production (HEMP): meson L Mesonw.f. Large power & NLO Very slow scaling t Quark contribution

  6. 8 GPDs 8 TMDs Model dependent relations 4 Chiral-even H q or f1 q q • *Lp 0LpL=0 - E  p p E  f1T Sivers:quark kT &nucleontransv. Spin ‘’Elusive’’ t • *Lp 0Lp L=1 Ji: 2Jq=  x (Hq(x,ξ,0) +Eq(x,ξ,0) ) dx Relation to OAM + theirpartner for polarised quarks ~ • H  q or g1L • Eg1T ~

  7. 8 GPDs 8 TMDs Model dependent relations 2 of the 4 Chiral-even H q or f1 • *Lp 0LpL=0 -  E  f1T Sivers:quark kT &nucleontransv. Spin ‘’Elusive’’ • *Lp 0Lp L=1 Ji: 2Jq=  x (Hq(x,ξ,0) +Eq(x,ξ,0) ) dx - 2 of the 4 Chiral-odd HT h1 Transversity: quark spin & nucleontransv. spin • *T p 0Lp L=0 ~ -  2HT + ET h1 Boer-Mulders: quark kT & quark transverse spin ET = • *Tp 0LpL=1

  8. γ* γ Q2 hard x +ξ x -ξ soft GPDs p p’ t Compton FormFactors are measured in DVCS The amplitude DVCS at LT & LO in S: Real part Imaginary part t, ξ~xBj/2fixed Im part measured in Beam Spin orTarget Spin asymmetries q(x) DGLAP DGLAP Real part measured in Beam Charge asymmetry or cross section ERBL

  9. γ* γ Q2 hard x +ξ x -ξ soft GPDs p p’ t =Δ2 Compton FormFactors (CFF) are measured in DVCS The amplitude DVCS at LT & LO in S: Real part Imaginary part t, ξ~xBj/2fixed Im part measured in Beam Spin orTarget Spin asymmetries  ReH(,t) = PdxImH(x,t) + D (t) x- Real part measured in Beam Charge asymmetry or cross section D termrelated to the Energy-MomentumTensor : Polyakov, PLB 555 (2003) 57-62

  10. DVCS (golden channel) CFF GPD H (E) Exclusive Single Photon production ℓp ℓ’ p’  BH DVCS ℓ ℓ   GPD slow p p slow p p small t small t d  |TBH|2 + Im(TDVCS) TBH + Re(TDVCS) TBH + |TDVCS|2 Known to 1 % Linearcombination of GPDsbilinearcombination of GPDs

  11. DVCS (golden channel) CFF GPD H (E) Exclusive Single Photon production ℓp ℓ’ p’  BH DVCS ℓ ℓ   GPD slow p p slow p p small t small t d  |TBH|2 + Im(TDVCS) TBH + Re(TDVCS) TBH + |TDVCS|2 Known to 1 % Linearcombination of GPDsbilinearcombination of GPDs { • Beam Charge Asym on proton • ACcos=Re(F1H +(F1+ F2)H  t/4m2F2E )) Re (F1H) • Beam Spin Asym on proton • ALUsin= Im (F1H +(F1+ F2)H t/4m2F2E )) Im (F1H) smallxB ~ ~

  12. DVCS (golden channel) CFF GPD H (E) Exclusive Single Photon production ℓp ℓ’ p’  BH DVCS ℓ ℓ   GPD slow p p slow p p small t small t d  |TBH|2 + Im(TDVCS) TBH + Re(TDVCS) TBH + |TDVCS|2 Known to 1 % Linearcombination of GPDsbilinearcombination of GPDs { • Beam Charge Asym on proton • ACcos=Re(F1H +(F1+ F2)H  t/4m2F2E )) Re (F1H) • Beam Spin Asym on proton • ALUsin= Im (F1H +(F1+ F2)H t/4m2F2E )) Im (F1H) • BSA on neutron ALUsin  Im (F1nH- F2nE) • Target Spin Asym on proton • AUTsin(-s) cos Im (F2H  F1E ) smallxB ~ ~ {

  13. HEMP  (MFF)2filterof GPDs and flavors Hard Exclusive Meson Production (HEMP): Vectormeson production (ρ,ω,, J/…) H & E Pseudo-scalar production (π,η…)  H & E ~ ~ Hρ0 = 1/2 (2/3 Hu + 1/3 Hd + 3/8 Hg) Hω= 1/2 (2/3 Hu – 1/3 Hd + 1/8 Hg) H = -1/3 Hs - 1/8 Hg Ration /ρ= 2/9 in the gluon sector

  14. The idealexperiment High beamenergy ensure hard regime and large kinematicdomain polarizedbeam availability of positive andnegativeleptons variable energy for: L/T separation for pseudo scalarprod  separationfor DVCS2 and Interf DVCS H2, D2, Long. Pol., Transv. Pol. Target High luminosity small cross section fullydifferentialanalysis (xB, Q2, t, ) Hermetic detectors ensureexclusivity but does not exist (yet)

  15. The past and future experiments Collider mode e-p forwardfast proton HERA till 2007 Polarised 27 GeV e-/e+ Unpolarised 920 GeV p  Full event reconstruction

  16. The past and future experiments Collider mode e-p forwardfast proton HERA till 2007 Polarised 27 GeV e-/e+ Unpolarised 920 GeV p  Full event reconstruction Fixedtarget mode slow recoil proton Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 withrecoil detector

  17. The past and future experiments Collider mode e-p forwardfast proton HERA till 2007 Polarised 27 GeV e-/e+ Unpolarised 920 GeV p  Full event reconstruction CEBAF at JLab HallA Fixedtarget mode slow recoil proton Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 withrecoil detector High lumi, highly polar. 6 & 12 GeV e- Long, (Trans) polarised p, d target Missing mass technique CLAS HallACLAS Spectrometer large acceptancedet

  18. The past and future experiments Collider mode e-p forwardfast proton HERA till 2007 Polarised 27 GeV e-/e+ Unpolarised 920 GeV p  Full event reconstruction CEBAF at JLab HallA Fixedtarget mode slow recoil proton Polarised 27 GeV e-/e+ Long, Trans polarised p, d target Missing mass technique 2006-07 withrecoil detector High lumi, highly polar. 6 & 12 GeV e- Long, (Trans) polarised p, d target Missing mass technique CLAS LHC COMPASS Highlypolarised160 GeV+/- p target, (Trans) polarisedtarget withrecoildetection SPS

  19. High BeamEnergy xB  BH  Example at Eℓ=160 GeV xB=0.01 xB=0.04 xB=0.1 BH dominates Reference yield DVCS dominates Study of d/dt Access to DVCS ampl. Via interference Eℓ BH  Jlab HERMES, H1 COMPASS Only for high energy H1 & ZEUS COMPASS

  20. Exclusivity: ep e +  + p Collider mode e-p forwardfast proton e’ Outgoing proton escapes through the beam pipe Tagged in forward proton spectrometer p’ Interferencetermintegrated over   pure DVCS cross section

  21. Exclusivity: ep e +  + p Collider mode e-p forwardfast proton e’ Outgoing proton escapes through the beam pipe Tagged in forward proton spectrometer p’ Interferencetermintegrated over   pure DVCS cross section

  22. Exclusivity: ep e +  + p Fixedtarget mode slow recoil proton withoutrecoil detector ℓp ℓ’+ (+p’) • ℓp ℓ’+ (++) • ℓp ℓ’+ (+  + p’+…) from0decay…

  23. Exclusivity: ep e +  + p Fixedtarget mode slow recoil proton withoutrecoil detector ℓp ℓ’+ (+p’) • ℓp ℓ’+ (++) • ℓp ℓ’+ (+  + p’+…) from0decay… ep e +  (+ p +…) ep e +  (+ p in acceptance+…) ep e +  + p withrecoil detector

  24. Exclusivity: ep e +  + p Fixedtarget mode slow recoil proton withoutrecoildtector ℓp ℓ’+ (+p’) HallA • ℓp ℓ’+ (++) • ℓp ℓ’+ (+  + p’+…) from0decay…

  25. SelectedResults(and perspectives) • Cross sections measurements: DVCS and mesons • Study of the GPD H with DVCS on proton • Beam Spin Asym: HallA – CLAS - HERMES • Beam Charge Asym: HERMES – H1 – (COMPASS) • Cross section diff and sum: HallA – CLAS – (COMPASS) • Study of the GPD H • Long. Pol. Target Asym or cross section • Hunting the GPD E • Beam Spin cross section on the neutron – HallA – (Jlab) • Transv. Pol. Target Asym on the proton - HERMES - (JLab) ~  3D proton imaging from gluon to quark  ‘Holygrail’ for OAM

  26. DVCS Results Published Data for DVCS Since 2 PRL in 2001 Gluons sea valence quarks

  27. Meson and photon Cross sections

  28. g g IP ‘soft’ ‘hard’ Meson and photon Cross sections Are we in the hard regime ? •  increases from soft (~0.2) to hard (~0.8) • ‘soft Pomeron’ xg(x,Q2)2 • b decreases from soft (~10 GeV-2)to hard (~5 GeV-2)

  29. Cross sections and W dependence Photoproduction  SOFT HARD

  30. Cross sections and W dependence Q2=0.05 GeV2 J/  J/

  31. Cross sections and W dependence DVCS DVCS

  32. Cross sections and t dependence sensitivity to the nucleon transverse size + to the meson transverse size J/ and DVCS in the hard regime at small Q2

  33. Cross sections and t dependence Interplaybetween the W and t dependence • J/ production: • ’= 0.13  0.03GeV-2 • at Q2=0.05 GeV2 • ’= 0.05  0.05GeV-2 • at Q2=10 GeV2 • Soft pomeron • ’= 0.25 GeV-2 J/ J/

  34. Cross sections and t dependence Almost no evolution as a function of W B= 5.45  0.19  0.34 GeV2 at <Q2> = 8 GeV2 and <x> = 1.2 10-3 = 0.65  0.02 fm < r2 (xB) >  2 B(xB)

  35. Cross sections and t dependence Gluon and sea quark imaging J/slope DVCS HERA as soft Pomeron and gluons in 2 weeks in 2012 with40 weeks in 2016-17 1rst bar= stat. error; 2nd = stat + syst. errors DVCS Prediction at COMPASS For 2 years 2016-17 r < r2 (xB) >  2 B(xB) 0.01 0.1 ? x 1/3 1. 0.5 1 0.65 0.02 fm H1 PLB659(2008) COMPASS xB

  36. Predictions for DVCS from KM model KM10: Kumericki and Mueller NPB (2010) 841; arXiv:0904.0458 one of the mostgeneralparameterization of GPDsbased on theirmathematicproperties fit to the DVCS data and DIS

  37. Predictions for mesonsfrom GK model GK model for GPDs ( determined for mesons) including dominant (longitudinal) L* p  Lp andtransv. polar. T* p  Tp quark and gluon contributions and beyongleading twist LO LO ZEUS H1 ZEUS H1

  38. DVCS interference on the proton  ImDVCS with BSA or Beam Spin difference  ReDVCS with BCA or Beam Charge difference  mainlyconstrains on the GPD H

  39. First DVCS interference signal BSA asymmetries – PRL87 (2001) ALU Validate the dominance of the handag contribution (Fit and VGG model)

  40. Beam Spin Sum and Diff of DVCS - HallA E00-110 pioneerexperimentwithmagneticspectrometer 3 measurements: xB=0.36 Q2= 1.5, 1.9, 2.3 GeV2 e p  e  p Data: Munoz et al. PRL97, 262002 (2006) Model: Kroll, Moutarde, Sabatié, EPJC73 (2013) withGPDsfrom GK model xB=0.36 Q2= 2.3 GeV2 News: - Re-analysis of the data (MC, RC, normalisation/DIS) - 2010: run E07-007 Rosenbluth-like DVCS2/Int sparation - 2014: HallAwith 11 GeV - 2018: HallCwith 11 GeV Beam Spin difference Beam Spin Sum = Total cross section Do weunderstand Hall A data?

  41. Beam Spin Sum and Diff of DVCS - HallA Do weunderstand Hall A data? Data: Munoz et al. PRL97, 262002 (2006) Model: Braun, Manashov, Pirnay, Mueller PRD79 (2014) GK12 model evaluated with KM and BMP prescription including kinematic corrections (finite-t, target mass corr.) Beam Spin Sum = Total cross section Beam Spin difference

  42. Beam Spin Sum and Diff of DVCS - future withmagneticspectrometer + Calorimeter Need a new challenging Calo ~ 2018 First runafter the 12GeV upgrade Now 2014

  43. BSA in a large kinematicdomain - CLAS Part 1 of the E01-113 or e1-DVCS exp • e p  e  p CLAS+ InnerCalorimter Solenoidmagnet No simple interpretation of  Data: Girod et al. PRL100, 162002 (2008)

  44. Cross section analysis - CLAS Difficulty of the task • 4 bins in Q2(x) • vs 3 bins in t

  45. Beam Spin Diff- CLAS (without Hall A) 0.15 0.26 0.45 |t| (GeV2) 1.27 1.63 1.80 2.58 Q2(GeV2) 0.15 0.18 0.24 0.30 xB

  46. Beam Spin Sum- CLAS (without Hall A) 0.15 0.26 0.45 |t| (GeV2) 1.27 1.63 1.80 2.58 Q2(GeV2) 0.15 0.18 0.24 0.30 xB

  47. Future with CLAS12 • E12-06-119 LH2Target and Long. Pol. Target in 2016

  48. BSA and BCA with HERMES Last analyses with the complete set of data including 2006-07 Combinedanalysis of charge and polarisation observables to separateinterferenceterm and DVCS2 contributions

  49. BSA with HERMES Complete data set including 2006-07 (without Hall A) sin  term ImF1 H sin term from DVCS2 sin 2 term higher twist resonant fraction ep e+ KM: GHL11: flexible parameterization

  50. BSA withrecoil detector with HERMES data set 2006-07 ep e +  ( + p +…) High-purityeventselection shows thatthereisonly asmall influence on the extracted BSA amplitude fromeventsinvolving a  particle (associated DVCS) The leadingasymmetry has increased by 0.054  0.016 Mainly dilution due to the associated DVCS p in accepta ep e +  + p

More Related