1 / 32

PROSTE RACHUNKI WYKONYWANE ZA POMOCĄ KOMPUTERA WPROWADZENIE DO ALGORYTMIKI

PROSTE RACHUNKI WYKONYWANE ZA POMOCĄ KOMPUTERA WPROWADZENIE DO ALGORYTMIKI. Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl. Algorytm, algorytmika. Algorytm – opis rozwiązania krok po kroku postawionego problemu lub sposobu osiągnięcia jakiegoś celu

dillan
Télécharger la présentation

PROSTE RACHUNKI WYKONYWANE ZA POMOCĄ KOMPUTERA WPROWADZENIE DO ALGORYTMIKI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROSTE RACHUNKI WYKONYWANE ZA POMOCĄ KOMPUTERAWPROWADZENIE DO ALGORYTMIKI Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka +

  2. Algorytm, algorytmika Algorytm– opis rozwiązania krok po kroku postawionego problemu lub sposobu osiągnięcia jakiegoś celu Pierwszy algorytm – algorytm Euklidesa 300 p.n.e algorytm od Muhammad ibn Musa al-ChorezmiIX w. Algorytmika – dziedzina zajmująca się algorytmami i ich własnościami informatyka +

  3. Algorytmy a informatyka Informatyka – jedna z definicji: dziedzina wiedzy i działalności zajmująca się algorytmami Czy zajmuje się też algorytmami kulinarnymi? Donald E. Knuth: Mówi się często, że człowiek dotąd nie zrozumie czegoś, zanim nie nauczy tego – kogoś innego. W rzeczywistości, człowiek nie zrozumie czegoś (algorytmu) naprawdę, zanim nie zdoła nauczyć tego – komputera. Ralf Gomory (IBM): Najlepszym sposobem przyspieszania komputerów jest obarczanie ich mniejszą liczbą działań (szybszymi algorytmami) Będziemy uczyć komputery, czyli programować je ! informatyka +

  4. Algorytmiczne rozwiązywanie problemu Dla problemu – chcemy otrzymać rozwiązanie komputerowe, które jest: • zrozumiałe dla każdego, kto zna problemu • poprawne, czyli spełnia specyfikację (opis) problemu • efektywne, czyli nie marnuje czasu i pamięci komputera Metoda rozwiązywania: • analiza sytuacji problemowej • sporządzenie specyfikacji: wykaz danych, wyników i relacji • projekt rozwiązania • komputerowa realizacja rozwiązania – implementacja • testowanie poprawności rozwiązania • dokumentacja i prezentacja rozwiązania informatyka +

  5. Rozwiązywanie problemów z pomocą komputerów Objaśnienie dwóch terminów: Problem: • problem, gdy nie podano nam, jak należy go rozwiązać, ale wiemy wystarczająco, by poradzić sobie z nim • a więc, problem jest dla każdego nie tylko dla orłów Programowanie: • komputery wykonują tylko programy • cokolwiek uruchamiamy na komputerze: Google, dokument w Word, arkusz w Excel, naciśnięcie klawisza – jest programem • każdy widoczny i niewidoczny efekt działania komputera to wynik działania jakiegoś programu Konkluzja: powinniśmy lepiej poznać programowanie komputerów informatyka +

  6. Myślenie algorytmiczneMyślenie komputacyjne (ang. computational thinking) Reklama firmy IBM z 1924 roku Komputer to maszyna do myślenia !!! informatyka +

  7. Problemy, algorytmy i ich komputerowe realizacje (implementacje) Plan: • Obliczenia w komputerze – czy komputer może wszystko policzyć? • trasę dla Premiera • kryptogram RSA • Liczby dziesiętne, binarne, … – system pozycyjny, zamiana liczb między systemami • Obliczanie wartości wielomianu – Schemat Hornera • Podnoszenie do potęgi – szybko! • Algorytm Euklidesa – rekurencja, jako przedsmak informatyki informatyka +

  8. Czy komputer może wszystko obliczyć , 1 Problem: Znajdź najkrótszą trasę dla Premiera przez wszystkie miasta wojewódzkie. Rozwiązanie: Premier zaczyna w Stolicy a inne miasta może odwiedzać w dowolnej kolejności. Tych możliwości jest: 15*14*13*12*11*…*2*1 = 15! (15 silnia) W 1990 roku było: 48*47*46*…*2*1 = 48! (48 silnia) Jak szybko można obliczyć 15!, a 48! Mając komputer, który wykonuje 1015 (1 petaflops) operacji na sekundę (superkomputer)? 15! = 1307674368000/1015 sek. = ok. 0.01 sek. 48! = 1,2413915592536072670862289047373*1061/1015 = Ile to jest lat? 25! = 15511210043330985984000000/1015 sek. = 15511210043 sek. = = 179528 dni = 491 lat informatyka +

  9. Czy komputer może wszystko obliczyć, 2 Kryptografia: Szyfr RSA, jeden z najpopularniejszych obecnie, bazuje na podnoszeniu do dużej potęgi dużych liczb, np. 12345678909876543212345678909876543211234567899876543211234567890123456789098765432112345678909876543211234567890987654321 Jak można szybko obliczać takie potęgi? Demo: informatyka +

  10. System dziesiętny, system pozycyjny Liczba dziesiętna: 357 ma wartość (dziesiętną): 357 = 3*100 + 5*10 + 7*1 = 3*102 + 5*101 + 7*100 a zatem liczba: dn-1dn-2 … d1d0 która ma n cyfr ma wartość: dn-1*10n-1 + dn-2*10n-2 + … + d1*101 + d0*100 10 – podstawa systemu {0, 1, 2, 3, …, 8, 9} – cyfry 2, 8, 16 – podstawy systemów używanych w komputerach podstawa cyfry 2 0, 1 system binarny 8 0, 1, 2, 3, 4, 5, 6, 7 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 60 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, … informatyka +

  11. System binarny Liczba binarna: 10101 = (10101)2ma wartość (dziesiętną): 1*24 + 0*23 + 1*22 + 0*21 + 1*20 = 24 + 22 + 1 = 16 + 4 + 1 = 21 a zatem liczba binarna: (bn-1bn-2 … b1b0)2 która ma n cyfr ma wartość: a = bn-1*2n-1 + bn-2*2n-2 + … + b1*21 + b0*20 (*) Jak szybko obliczać wartość dziesiętną binarnego rozwinięcia? We wzorze (*) zastępujemy 2 przez x i otrzymujemy: a = bn-1*xn-1 + bn-2*xn-2 + … + b1*x1 + b0*x0 Jest to wielomian zmiennej x o współczynnikach 0 lub 1, czyli: Pytanie: Jak szybko obliczać wartość wielomianu? Najbardziej znaczący bit Najmniej znaczący bit Binarne rozwinięcie liczby a informatyka +

  12. Obliczanie wartości wielomianu Obliczanie wartości wielomianu jest bardzo ważną operacją w komputerze, bo wartość każdej funkcji jest liczona jako wartość wielomianu, np. cos x = 1 – 0.49670x2 + 0.03705x4. Wielomian stopnia 2: w(x) = ax2 + bx + c = a*x*x + b*x + c 3 mnożenia 2 dodawania w(x) = ax2 + bx + c = (a*x + b)*x + c 2 mnożenia 2 dodawania Wielomian stopnia 3: w(x) = ax3 + bx2 + cx + d = ((a*x + b)*x + c)*x + d 3 mnoż. 3 dod. Wielomian stopnia n: wn(x) = a0*xn + a1*xn-1 + … + an-1*x + an = = (a0*xn-1 + a1*xn-2 + … + an-1)*x + an = … = = ((…((a0*x + a1)*x + a2)*x + … + an-2)*x + an-1)*x + an informatyka +

  13. Obliczanie wartości wielomianu specyfikacja, algorytm Specyfikacja problemu – dokładny opis problemu Problem Wielomian – Obliczanie wartości wielomianu Dane:n – nieujemna liczba całkowita a0, a1, a2, ..., an – n + 1 współczynników wielomianu z – wartość argumentu – obliczamy wn(z). Wynik:wn(z) – czyli wartość wielomianu wn(x) w punkcie x = z Algorytm do obliczania wartości wielomianu: wn(z) = ((…((a0*z + a1)*z + a2)*z + … + an-2)*z + an-1)*z + an Schemat Hornera: y := a0 y := y*z+ a1 y := y*z+ a2 ….. y := y*z+ an-1 y := y*z+ an n mnożeń i n dodawań Nie ma szybszego algorytmu!!! y := a0 y := y*z + ai dla i = 1, 2, …, n informatyka +

  14. Schemat blokowy algorytmu Hornera Instrukcja warunkowa: rozgałęzienia algorytmu i:= 0; y := a0 Początkowe wartości Czy i = n Czyli, czy wyczerpano wszystkie współczynniki Instrukcja iteracyjna Tak Nie Ada Augusta, córka Byrona, uznawana powszechnie za pierwszą programistkę komputerów, przełomowe znaczenie maszyny analitycznej Ch. Babbage’a, pierwowzoru dzisiejszych komputerów, upatrywała właśnie „w możliwości wielokrotnego wykonywania przez nią danego ciągu instrukcji, z liczbą powtórzeń z góry zadaną lub zależną od wyników obliczeń”, a więc w iteracji. Wyprowadź wartość y Koniec algorytmu i := i + 1 y := y*z + ai informatyka +

  15. Pełny schemat blokowy algorytmu Hornera informatyka +

  16. Algorytm Hornera w postaci programu (Pascal) nazwa programu deklaracje, typy zmiennych blok programu – początek czytaj n, czytaj z czytaj pierwszy współczynnik początkowa wartość wyniku pętla od 1 do n czytaj kolejny współczynnik powiększenie wyniku iteracja – koniec pisz wynik blok programu – koniec program Horner; vari,n :integer; a,y,z:real; begin read(n); read(z); read(a); y:=a; for i:=1 to n do begin read(a); y:=y*z+a end; write(y) end. informatyka +

  17. WarsztatyAlgorytm, język programowania, komputer • Proces komputerowej realizacji algorytmu: • Opis algorytmu • Zapis w języku programowania (Pascal, C++) • Przetłumaczenie na język zrozumiały przez komputer • Wykonanie • Testowanie informatyka +

  18. Algorytm Hornera – współczynniki w tablicy (Pascal) Deklaracja tablicy Program Horner_tablica; var i,n :integer; y,z:real; a:array[0..100] of real {Co najwyzej 100 wspolczynnikow} begin read(n); for i:=0 to n do read(a[i]); writeln(' z y'); read(z); while z <> 0 do begin y:=a[0]; for i:=1 to n do y:=y*z+a[i]; write(' ',y:2:5); writeln; read(z) end end. Czytanie współczynników Instrukcja iteracyjna z warunkiem: Obliczanie wartości tego samego wielomianu tak długo, jak długo argument jest różny od zera, czyli z <> 0. informatyka +

  19. Zastosowania Algorytmu Hornera • Obliczanie wartości wielomianów. • Obliczanie wartości dziesiętnej liczb danych w systemie o podstawie różnej od 10, np. liczb binarnych. Uwaga: jest to bardzo prosta metoda, np. dla obliczeń na kalkulatorze bez pamięci. • Szybkie potęgowanie (w dalszej części) informatyka +

  20. Otrzymywanie postaci binarnej liczb Szkolna metoda: dzielimy przez dwa tak długo, jak długo iloraz jest większy od zera – słupki: dzielenie iloraz reszta 187|2 93 1 93|2 46 1 46|2 23 0 23|2 11 1 11|2 5 1 5|2 2 1 2|2 1 0 1|2 0 1 Reprezentacja od końca reszt: 187 = (10111011)2 Bardzo prosty program Program Rozwiniecie_binarne; var a:integer; begin read(a); while a <> 0 do begin write(a mod 2,' '); a:=a div 2 end end. Ciekawe pytanie: jaka jest długość rozwinięcia binarnego liczby n? informatyka +

  21. Podnoszenie do potęgi, 1 Dane:m – liczba naturalna, x – liczba rzeczywista Wynik: y = xm Algorytmy: korzystają ze spostrzeżenia: • jeśli m jest parzyste, to xm = (xm/2)2 • jeśli m jest nieparzyste, to xm = (xm –1)x (m – 1 staje się parzyste). Faktycznie, korzysta się z postaci binarnej wykładnika m. Przykład:m = 22 Sposób 1. • Rozłóż m na sumę potęg liczby 2 mamy: 22 = 2 + 4 + 16 • A stąd: x22 = x2+4+16 = x2 *x4 *x16 • Kolejne mnożenia: x2, x4 = (x2)2, x8 = (x4)2, x16 = (x8)2, y = x2 *x4 = x6, y = y*x166 mnożeń (kwadrat to jedno mnożenie) informatyka +

  22. Podnoszenie do potęgi, 2 • Znajdź rozwinięcie binarne liczby m; mamy: 22 = (10110)2 • Przedstaw wykładnik w postaci schematu Hornera; mamy: 22 = 1*24 + 0*23 + 1*22 + 1*21 + 0*20 = (((2 + 0)2 + 1)2 + 1)2 +0 • Z postaci wykładnika określ kolejność mnożeń: x(((2+0)2+1)2+1)2+0 = x(((2+0)2+1)2+1)2 = (x(((2+0)2+1)2+1)2 = (x(((2+0)2+1)2 x)2 = = (x(((2+0)2+1)2x)2 = (x(((2+0)2x)2x)2 = (x(((2+0)2x)2x)2 = (((x2)2x)2x)2 = x22 • Kolejne mnożenia: x2, x4 = (x2)2, x5 = (x4)x, x10 = (x5)2, x10x = x11, (x11)2 = x22 Ten algorytm również wykonał 6 mnożeń, ale liczy inne iloczyny. Obie metody są bardzo efektywne i praktyczne – wykonują co najwyżej dwa razy więcej mnożeń niż wynosi długość liczby w postaci binarnej informatyka +

  23. Algorytm Euklidesa, 1 • Uważany za pierwszy algorytm – powstał 300 p.n.e. • Chociaż Chińczycy i Hindusi wcześniej tworzyli przepisy obliczeniowe. • Przez długie lata był synonimem algorytmu i od niego zaczynały wszystkie książki akademicki. • Ma bardzo wiele zastosowań praktycznych i teoretycznych: • arytmetyka, czyli obliczenia na liczbach całkowitych • kryptografia – RSA • łamigłówki • Przykład: Czy za pomocą naczyń 6 i 10 litrowych można napełnić pojemnik 15 litrami wody – wodę można dolewać lub pobierać z pojemnika tylko całymi naczyniami. informatyka +

  24. Algorytm Euklidesa, 2 Problem NWD(m,n) – Największy Wspólny Dzielnik Dane: m, n – liczby naturalne (można przyjąć, że m ≤ n) Wynik: NWD(m,n) – Największy wspólny dzielnik liczb m i n. Przykłady: NWD(42,14) = 14 NWD(24,16) = 8 NWD(13,21) = 1 13 i 21 są względnie pierwsze NWD(0,31) = 31 0 jest podzielne przez każdą liczbę Zasada, wykorzystana w algorytmie – Twierdzenie o ilorazie i reszcie n = q*m + r, gdzie 0 ≤ r < m q – iloraz, r – reszta. informatyka +

  25. Algorytm Euklidesa, 3 Wnioski: • Jeśli r= 0, to m dzieli n, czyli NWD(m,n) = m • Jeśli r ≠ 0, to mamy r = n – qm, czyli każda liczba, która dzieli n oraz m dzieli również r, w szczególności największa taka liczba. Stąd mamy: NWD(m,n) = NWD(r,m) Przykład: NWD(25,70) = NWD(20,25) = NWD(5,20) = NWD(0,5) = 5 NWD(25,70): 70 = 2*25 + 20 NWD(20,25) 25 = 1*20 + 5 NWD(5,20) 20 = 4*5 + 0 r= 0, więc NWD( , ) = 5 Generowane liczby maleją: 70, 25, 20, 5, 0 więc algorytm jest skończony informatyka +

  26. Algorytm Euklidesa, 4 – dwie realizacje Realizacja z funkcją: program Euklides_funkcja; var m,n:integer; function NWD(m,n:integer):integer; var r:integer; begin while m>0 do begin r:=n mod m; n:=m; m:=r end; NWD:=n end; begin read(m,n); writeln(NWD(m,n)) end. program Euklides; var m,n,r:integer; begin read(m,n); while m>0 do begin r:=n mod m; n:=m; m:=r end; write(n) end. Funkcja Wywołanie funkcja informatyka +

  27. Algorytm Euklidesa, 5 – realizacja rekurencyjna Funkcja rekurencyjna program Euklides_rekurencja; var m,n:integer; function NWD_rek(m,n:integer):integer; begin if m>n then NWD_rek:=NWD_rek(n,m) else if m = 0 then NWD_rek:=n else NWD_rek:=NWD_rek(n mod m,m) end; begin read(m,n); writeln(NWD_rek(m,n)) End. Wywołania rekurencyjne informatyka +

  28. Algorytm Euklidesa, 6 – zagadki Przykład 1. Czy za pomocą naczyń 6 i 10 litrowych można napełnić pojemnik 15 litrami wody – wodę można dolewać lub pobierać z pojemnika tylko całymi naczyniami. Jeśli istnieje rozwiązanie, to istnieją takie x i y, że 6x + 10y = 15 Czy istnieją? Uzasadnij odpowiedź. Rozwiązanie 1.W tym przypadku nie istnieje rozwiązanie. Istnieje, gdy prawa strona jest wielokrotnością NWD(6,10). Przykład 2. W jednym pojemniku są klocki o wysokości p, a w drugim – o wysokości q. Czy zawsze można zbudować wieże z każdego rodzaju klocków, które mają tę samą wysokość? Jeśli jest to możliwe, to jaka jest najmniejsza wysokość takich wież? Rozwiązanie 2. Zawsze możliwe. Najmniejsza wysokość NWW(p,q). Pytanie 3. Jaki zachodzi związek między NWD(m,n) i NWW(m,n)? Mamy NWW(m,n) = (m*n)/NWD(m,n) informatyka +

  29. Pokrewne zajęcia w Projekcie Informatyka + Wykład+Warsztaty (Wszechnica Poranna): • Wprowadzenie do algorytmiki i programowania – wyszukiwanie i porządkowanie informacji • Proste rachunki wykonywane za pomocą komputera. • Techniki algorytmiczne – przybliżone (heurystyczne) i dokładne. Wykłady (Wszechnica Popołudniowa): • Czy wszystko można policzyć na komputerze? • Porządek wśród informacji kluczem do szybkiego wyszukiwania. • Dlaczego możemy się czuć bezpieczni w sieci, czyli o szyfrowaniu informacji. • Znajdowanie najkrótszych dróg, najniższych drzew, najlepszych małżeństw informatyka +

  30. Pokrewne zajęcia w Projekcie Informatyka + Kursy (24 godz.) – Wszechnica na Kołach: • Algorytmy poszukiwania i porządkowania. Elementy języka programowania • Różnorodne algorytmy obliczeń i ich komputerowe realizacje • Grafy, algorytmy grafowe i ich komputerowe realizacje Kursy (24 godz.) – Kuźnia Informatycznych Talentów – KIT dla Orłów: • Przegląd podstawowych algorytmów • Struktury danych i ich wykorzystanie • Zaawansowane algorytmy Tendencje – Wykłady  • Algorytmy w Internecie, K. Diks • Czy P = NP, czyli jak wygrać milion dolarów w Sudoku, J. Grytczuk • Między przeszłością a przyszłość informatyki, M.M Sysło informatyka +

More Related