1 / 46

g -ray spectroscopy of (well deformed) sd -shell hypernuclei

g -ray spectroscopy of (well deformed) sd -shell hypernuclei. Graduate school of Science, Tohoku University T. Koike Hyperball-J collaboration K Hagino, Myaing Thi Win. Three physics themes of g -ray spectroscopy of hypernuclei. L N interaction Effective L N interaction

dnero
Télécharger la présentation

g -ray spectroscopy of (well deformed) sd -shell hypernuclei

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. g-ray spectroscopy of (well deformed) sd-shell hypernuclei Graduate school of Science, Tohoku University T. Koike Hyperball-J collaboration K Hagino, Myaing Thi Win

  2. Three physics themes of g-ray spectroscopy of hypernuclei • LN interaction • Effective LN interaction • Spin doublet splitting • Impurity effects induced by a L hyperon • Change of core nucleus properties • Change of core energy levels • Electromagnetic properties: e.g. B(E2) • Nuclear medium effects of baryons • Change of L in nuclear medium • Single L particle →B(M1)

  3. L Coupling of L to nuclear collectivity Low-lying elementary excitation mode Symmetry of nuclear vacuum SSB Collective motion Accessible via g-ray spectroscopy with a few keV sensitivity Shape of a nucleus at the ground state

  4. Single particle excitation v.s. collective excitation From E.S. Paul, Univ. Liverpool, U.K.

  5. Spontaneous deformation (SSB of rotational invariance) Nuclear deformation and collectivity • Nuclear shell effect • open shell→mass distribution anisotropy • uneven filling of magnetic sub-states • deformed shell model: Nilsson Model • modification of single particle energy levels • collective model by Bohr & Mottelson • collective elementary excitation (Nambu-Goldstone Mode) H = Hintrinsic+Hcollective Symmetry restoring term Rotation/Vibration Deformed potential (Nilsson potential)

  6. Shape parameterization Axially symmetric quadrupole Axially symmetric octapole l=2 a20≠0, a2±1=a2±2=0 l=3 a30≠0, a3±1,2,3 =0 a20≠0, a2±1,2 =0

  7. Quadrupole deformation (l=2) • Five parameters (a2,0,±1,±2) • →Euler angles + a20, a22 • (body-fixed frame axes are chosen to coincide with principal axes) • Further parameterization of a20, a22 • b2: asphericity • (deviation from spherical shape) • g: triaxiality • (difference in length along principal axis) nuclear surface described by (b2, g)

  8. Non collective oblate (b, g=60°) triaxial g spherical b Collective prolate (0,0) (b, g=0°)

  9. Classical collective Hamiltonian of Bohr-Mottelson for quadrupole deformation vibration moment of inertia rotation potential Axial rotation: 1D Triaxial rotation: 3D

  10. Axially symmetric shape Z (laboratory fixed) M 3 (body-fixed, axis of symmetry) K K: projection of total angular momentum I on the symmetry axis →a good quantum number

  11. 42+ E(41+)/E(21+) 31+ 43+ 22+ 23+ g-band 02+ b-band Spectra of a deformed even-even nucleus (collective excitation mode) 41+ g 21+ vibrational v.s. rotational 0+ K=0, nb=1, ng=0 b2, J K=2, nb=0, ng=1 K=0, nb=0, ng=0

  12. Collective excitation (Lab. frame)E(4+)/E(2+): Rotational v.s Vibrational • Rotational (deformed): • E(4)/E(2)=10/3 • Vibrational (spherical): • E(4)/E(2)=2 3.1 2.1

  13. b , Q0 (intrinsic frame)and 21+, B(E2)(Lab. frame) Intrinsic Quadrupole moment: Experimentally b:

  14. 22+ and experimental estimate of g A rigid triaxial rotor model Davydov and Filippov, Nucl. Phys. 8, 237 (1958) Meyer-Ter-Vehn, Nucl. Phys. A249, 111 (1975)

  15. Target: AZ A-1Z+L Gating on missing mass spectrum p (n) p- (p0) A-1LZ-1 g High resolution g-ray spectroscopy A-1LZ p n g Bp Bn g ALZ (K-,p-) qp >>0O Weak decay mostly via non-mesonic in sd-shell hypernuclei

  16. even-even mirror Possible sd-shell L hypernuclei via g-ray spectroscopy 39Ca 40Ca Z=20 38K 39K 38Ar 39Ar 40Ar 37Cl 34Cl 35Cl 36Cl 39Cl 31S 34S 36S 32S Z 30P 31P 28Si 30Si 27Si 26Al 27Al Most abundant isotopes (target) 26Mg 23Mg 24Mg 25Mg ~10% abundance 23Na 24Na 25Na 22Na proton decay 20Ne 22Ne 19Ne 21Ne neutron decay 18F 19F 21F N Z=9

  17. even-even mirror Possible sd-shell L hypernuclei via g-ray spectroscopy 40Ca Z=20 39K 38Ar 39Ar 40Ar 37Cl 35Cl 36Cl 39Cl 34S 32S Z 31P 28Si 30Si 27Al Most abundant isotopes (target) 26Mg 24Mg 25Mg ~10% abundance 23Na 24Na proton decay 20Ne 22Ne 21Ne neutron decay 18F 19F N Z=9

  18. (e2fm4)

  19. Rotational 24Mg 38Ca 20Ne 26Si 38Ar 22Mg Vibrational 18Ne Rotational v.s. Vibrational

  20. 18(▲) ,20Ne 22(▲) ,24Mg 26Si 30S 38Ar 38Ca 21+, 22+, and 02+

  21. L hypernuclei shape with self-consistent mean field approach by Tohoku theory group Relativistic mean field & Skyrme HF+BCS

  22. Relativistic Mean Field calculations • self-consistent mean field • Exchange of s, r, and w between N and L • Potential Energy Surface (PES) of a L hypernucleus with axially symmetric deformation: E(b) • Angular momentum not a good quantum number

  23. Skyrme Hartree-Fock +BCS Myaing Thi Win et al., submitted to PRC • self-consistent mean field • Skyrme-type LN interaction • PES of L hypernuclei with triaxial deformation: E(b,g) • Angular momentum not good quantum number 24Mg, 24Mg+L +L

  24. 4.238MeV 4.11MeV 22+ 22+ ћw ћwL 0+ 0+ 24Mg 25LMg A rough estimate based on energy expansion around the PES minimum (b0,g0) in terms of g numerical value

  25. Energy difference between core and hypernuclei Towards spherical shape, but through with energetically favorable path in (b,g) plane → g deformation is important in L hypernucleus

  26. L as a probe of a core nucleus shape (vacuum) stability in (b,g) plane Effects can be cleanly observed from L hypernucleus with even-even core Rigid No/small changes Soft Large changes (Weak coupling limit) (Impurity effect) Nuclear medium effect on L Property of core nucleus

  27. Mg is the most deformed in the sd-shell Non-yrast state population →22+, 02+ Response of core to L in the sd-shell Change in the (b, g) plane ? b softness (g-ray transition ½2+→ ½1+ ) g softness Similar shrinkage (no change in b and g) ? Possible to produce by using natural target Hyperncuelar g-ray spectroscopy of 25LMg

  28. Use of an natural Mg target 24LMg> 26LMg >25LMg 23LNa> 25LMg >24LNa

  29. 26LMg 25LMg 24LMg 11% 10% 79% 23LNa 24LNa Use of natural Mg target and identification of five L hypernuclei (I) Natural Mg 27Al 23Na 20>q>5 ∩ 5>q>0 27Al(K-,p-)→p+26LMg 20>q>5 → 5>q>0 → 23Na(K-,p-)→23LNa

  30. Use of natural Mg target and identification of five L hypernuclei (II) Use of two targets in one experiment • Enriched Mg target run: A • ID of 24LMg, 23LNa • Natural Mg target run: B • ID of 25LMg • Spectrum subtraction of B-A • ID of 26LMg, 24LNa

  31. g-g coincidence is essential → Hyperball-J • g-ray spectroscopy of five hypernuclear spectroscopy in the transitional mass region in the sd-shell • 25LMg: even-even core 24Mg • Mirror hypernuclei : 24LNa ⇔24LMg • 23LNa: N=Z core • 24LMg and 26LMg: isotope study (neutron dependence)

  32. J-PARC E13 experimental setup (K-, p- ) reaction @ pK = 1.5 GeV/c

  33. Hyperball-J Ge array • Compact arrangement • Ge detector x32(full set) • 60% relative eff., N-type, Transistor reset type (150MeV/reset) • Total photo peak eff. ~6% for 1-MeV γray • High modularity • Adjustable geometry • E13 & E03,07 (X x-ray) Half the array shown • Radiation hardness: • Mechanical cooling of Ge detector High background: • PWO background suppressor High energy deposit and counting rate: • Baseline restoration and pile up separation via waveform analysis R&D

  34. 電子光理学センターでの作業風景 2010年9月

  35. Single particle energy level From a text book by Ring and Schuck

  36. Nilsson Hamiltonian (deformed S.H.O) Anisotropic HO (axially symmetric) Kp[NnzL] (asymptotic Q.N.) • K: projection of total angular momentum along the symmetry axis • N: HO principal quantum number • nz : number of nodes along the symmetry (quantization) axis • L: orbital angular momentum projection onto the symmetry axis From Table of Isotopes

  37. Odd-A Core • 23Mg11(3) → g.s=3/2 • 2311(3)Na→ g.s=3/2 • 25Mg13(5) → g.s=5/2 Shape driving From Table of Isotope

  38. 24, 25, 26LMg(20>q>5) d3/2 1/2 1/2 2S1/2 5/2 3/2 d5/2 1/2 K=1/2+ K=3/2 K=1/2 K=5/2+ K=1/2+ K=0 3/2[211] 1/2[211] 1/2[200] 1/2[211] 5/2[202] 23Mg 24Mg 25Mg

  39. Even-core hypernucleus : 25LMg 5/2, 3/2 7/2, 9/2 5/2,3/2 T=0 2412Mg12 25LMg

  40. Core: 2412Mg12 (g.s. 0+ ,T=0) Bound (Ex<11.7MeV) E(4)/E(2)=3.1 B(E2)↑=432(11)(e2fm4) b=0.605, b/bs.p.=4.57 g=22o 6a 9LBe (g.s. 0+ ,T=0) 84Be4 (unbound) E(4)/E(2)=3.75 G(4+)=3.5MeV, G(2+)=1.5MeV B(E2;2+→4+)=45±14(e2fm4) Ec(2+)-EL(2+)=-9.8keV 2a 13LC (g.s. 0+ ,T=0) 126C6 E(4)/E(2)=3.17 B(E2)↑=397(e2fm4) b=0.582, b/bs.p.=2.2 E(2+)-EL(2+) ≈-90keV 3a Even-even core hypernucleus : 25LMg • Measurements of : • DE=E(3/2+)-E(5/2+) • spin-orbit in sd-shell • Radial dependence • DE(21+)=Ec(21+)-EL(21+)→b • DE(22+)=Ec(22+)-EL(22+)→g • EL(41)/EL(21)

  41. Mirror hypernuclei: 24LNa & 24LMg K=1/2 K=1/2 1/2[211] 1/2[211] 2311Na12 2312Mg11 K=3/2 K=3/2 3/2[211] 3/2[211]

  42. Core: 63Li3 4He+p+n a + d g.s. 1+ Z=N odd-odd core: 23LNa • Core: 2211Na11 • 20Ne +p+n • 16O+a+d • g.s. 3+ Kp=3+ • Core: 189F9 • 16O+p+n • 4a+d • g.s. 1+ 2211Na11 K=0+, T=1 K=0+, T=0 • Core: 105B5 • 8Be+p+n • 2a + d • g.s. 1+ 3/2[211] 3/2[211] K=3+, T=0 3/2[211] • Core: 147N7 • 12C+p+n • 3a + d • g.s. 1+ R.H. Spear et al., PRC 11 742 (1975)

  43. Things to do Experimental feasibility studies • Cross section for hyper-fragments (help needed form theory side) • Yield estimates • SKSMinus resolution (larger Z of a target) • Target thickness • Stopping time and DSAM simulation • …….

  44. Summary • L as a probe of ground state (vacuum) of sd-shell nuclei via detection of elementary excitation mode (collective mode) with a Ge detector sensitivity • Importance of triaxial deformation (g) • theoretical prediction by Myaing et al. • detection of 22+ • Use of a natural Mg target experiment at J-PARC • (K-,p-) reaction with SKS and Hyperball-J • g-ray spectroscopy of 25LMg • Well deformed even-even core • Experimental feasibility study needed • cross section calculations are appreciated

More Related