10 likes | 276 Vues
Liquid Metal-Based Plasmonics Ajay Nahata and Z. Valy Vardeny. Objective : To develop and characterize new plasmonic metamaterials in the terahertz (THz) spectral range.
E N D
Liquid Metal-Based Plasmonics Ajay Nahata and Z. Valy Vardeny Objective: To develop and characterize new plasmonic metamaterials in the terahertz (THz) spectral range. Approach: Explore unconventional materials that are typically not suitable for plasmonics applications at optical frequencies but exhibit reasonable conductivities at THz frequencies. Results and Significance: Liquid metals and well-developed microfluidic technology can be used successfully to create useful devices in a frequency range commonly referred to as the “gap in the electromagnetic spectrum.” Top: Photograph of periodic array of subwavelength holes formed using an elastomer and filled with a liquid metal (eutectic gallium indium). Bottom: Transmission properties of a 15×15 liquid metal array as a function of stretching the device along only one axis. Principal Investigators: Anil Virkar, Ajay Nahata & Brian Saam NSF DMR 11-21252; www.mrsec.utah.edu